A Narrative Review of Staphylococcus hominis Resistance Pattern: Multidrug- and Possible Extensively Drug-Resistance

  • Herleeyana Meriyani Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Jl. Kamboja No 11A Denpasar 80233.
  • Dwi Arymbhi Sanjaya Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Jl. Kamboja No 11A Denpasar 80233.
  • Rr. Asih Juanita Departement of Pharmacology, Faculty of Medicine, Udayana University, Denpasar-Bali, Indonesia
  • Desak Ketut Ernawati Departement of Pharmacology, Faculty of Medicine, Udayana University, Denpasar-Bali, Indonesia
Keywords: Biofilm, Minimum inhibitory concentration, Percentage of resistance, Pharmacokinetics/pharmacodynamics index, Staphylococcus hominis


Staphylococcus hominis is the third most frequent opportunistic pathogen in neonates and immunosuppressed patients that cause bacteremia, septicemia, endophthalmitis, and endocarditis. The emergence of methicillin resistant Staphylococcus hominis (MRSHo) has been reported and is a growing concern. This review was intended to determine the susceptibility of Staphylococcus hominis to antibiotic agents with pharmacokinetics/pharmacodynamic approach. In addition, this review was determined the phenotypic criteria and antibiotic choice of Staphylococcus hominis infection. Four databases i.e., PubMed, PlosOne, ScienceDirect and Google Scholar were employed in searching process. Antibiotic resistance was identified using the minimum inhibitory concentration (MIC) and the percentage of resistance. The breakpoint value was based on The European Committee on Antimicrobial Susceptibility Testing (EUCAST) Breakpoint tables for interpretation of MIC and zone diameters Version 11.0. There were 876 articles identified, 35 duplications were removed. These gave a total of 841 articles were screened yet 820 articles were irrelevant. Eventually, 21 articles were reviewed in this report. This review found that Staphylococcus hominis is potentially had MDR activity and a possible XDR bacterium that resistant to some antibacterial agents. The susceptibility of antibiotic to bacteria is not identical, and the regional reported drug resistance varies commonly due to differences in environment and antibiotic use. The resistance profile of Staphylococcus hominis is a complex interaction that affected by multifactorial such as: pharmacokinetics/pharmacodynamics index, mutant prevention concentration (MPC), mutant selection window (MSW), and the capability to produce biofilm.

Author Biography

Dwi Arymbhi Sanjaya, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar, Jl. Kamboja No 11A Denpasar 80233.




Abdollahi, M., & Mostafalou, S. (2022). Chloramphenicol. Encyclopedia of Toxicology: Third Edition, 837–840. https://doi.org/10.1016/B978-0-12-386454-3.00709-0
Almeida, L. M. De, Araújo, R. E. De, Sacramento, A. G., Pavez, M., Souza, A. G. De, & Rodrigues, F. (2013). Linezolid Resistance in Brazilian Staphylococcus hominis Strains Is Associated with L3 and 23S rRNA Ribosomal Mutations. 57(8), 4082–4083. https://doi.org/10.1128/AAC.00437-13
Alter, S. J., Sanfilippo, C. M., Asbell, P. A., & Decory, H. H. (2019). Antibiotic resistance among pediatric-sourced ocular pathogens: 8-year findings from the antibiotic resistance monitoring in ocular microorganisms (armor) surveillance study. Pediatric Infectious Disease Journal, 38(2), 138–145. https://doi.org/10.1097/INF.0000000000002206
Alzahrani, N. M., Booq, R. Y., Aldossary, A. M., Bakr, A. A., Almughem, F. A., Alfahad, A. J., Alsharif, W. K., Jarallah, S. J., Alharbi, W. S., & Alsudir, S. A. (2022). Liposome-Encapsulated Tobramycin and IDR-1018 Peptide Mediated Biofilm Disruption and Enhanced Antimicrobial Activity against Pseudomonas aeruginosa. Pharmaceutics, 14(5), 960.
Angelopoulou, A., Field, D., Pérez-Ibarreche, M., Warda, A. K., Hill, C., & Paul Ross, R. (2020). Vancomycin and nisin A are effective against biofilms of multi-drug resistant Staphylococcus aureus isolates from human milk. PLoS ONE, 15(5), 1–19. https://doi.org/10.1371/journal.pone.0233284
Asai, N., Sakanashi, D., Suematsu, H., Kato, H., Hagihara, M., Watanabe, H., Shiota, A., Koizumi, Y., Yamagishi, Y., & Mikamo, H. (2020). Clinical characteristics and relevance of coagulase-negative Staphylococci other than S. epidermidis by positive blood culture. Journal of Microbiology, Immunology and Infection, xxxx. https://doi.org/10.1016/j.jmii.2020.03.001
Asín-Prieto, E., Rodríguez-Gascón, A., & Isla, A. (2015). Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. Journal of Infection and Chemotherapy, 21(5), 319–329.
Autmizguine, J., Melloni, C., Hornik, C. P., Dallefeld, S., Harper, B., Yogev, R., Sullivan, J. E., Atz, A. M., Al-Uzri, A., & Mendley, S. (2018). Population pharmacokinetics of trimethoprim-sulfamethoxazole in infants and children. Antimicrobial Agents and Chemotherapy, 62(1), e01813-17.
Barrenechea, V., Vargas-Reyes, M., Quiliano, M., & Milón, P. (2021). A Complementary Mechanism of Bacterial mRNA Translation Inhibition by Tetracyclines. Frontiers in Microbiology, 12(June), 1–12. https://doi.org/10.3389/fmicb.2021.682682
Basak, S., Singh, P., & Rajurkar, M. (2016). Multidrug resistant and extensively drug resistant bacteria: A study. Journal of Pathogens, 2016.
Bassenden, A. V, Rodionov, D., Shi, K., & Berghuis, A. M. (2016). Structural analysis of the tobramycin and gentamicin clinical resistome reveals limitations for next-generation aminoglycoside design. ACS Chemical Biology, 11(5), 1339–1346.
Bassetti, M., & Righi, E. (2015). Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbeck’s Archives of Surgery, 400(2), 153–165.
Biedenbach, D. J., Arhin, F. F., Moeck, G., Lynch, T. F., & Sahm, D. F. (2015). In vitro activity of oritavancin and comparator agents against staphylococci, streptococci and enterococci from clinical infections in Europe and North America, 2011-2014. International Journal of Antimicrobial Agents, 46(6), 674–681. https://doi.org/10.1016/j.ijantimicag.2015.08.014
Block, M., & Blanchard, D. L. (2021). Aminoglycosides. In StatPearls [Internet]. StatPearls Publishing.
Bui, T., & Preuss, C. V. (2021). Cephalosporins. In StatPearls [Internet]. StatPearls Publishing.
Cassir, N., Rolain, J.-M., & Brouqui, P. (2014). A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Frontiers in Microbiology, 5, 551.
Chamon, R. C., Iorio, N. L. P., Cavalcante, F. S., da Silva Teodoro, C. R., de Oliveira, A. P. C., Maia, F., & dos Santos, K. R. N. (2014). Linezolid-resistant Staphylococcus haemolyticus and Staphylococcus hominis: Single and double mutations at the domain V of 23S rRNA among isolates from a Rio de Janeiro hospital. Diagnostic Microbiology and Infectious Disease, 80(4), 307–310. https://doi.org/10.1016/j.diagmicrobio.2014.09.011
Chang, J. Y., Kim, S. E., Kim, T. H., Woo, S. Y., Ryu, M. S., Joo, Y. H., Lee, K. E., Lee, J., Lee, K. H., Moon, C. M., Jung, H. K., Shim, K. N., & Jung, S. A. (2017). Emergence of rifampin-resistant staphylococci after rifaximin administration in cirrhotic patients. PLoS ONE, 12(10), 1–13. https://doi.org/10.1371/journal.pone.0186120
Chiang, Y., Wong, M. T. Y., & Essex, J. W. (2020). Molecular Dynamics Simulations of Antibiotic Ceftaroline at the Allosteric Site of Penicillin‐Binding Protein 2a (PBP2a). Israel Journal of Chemistry, 60(7), 754–763.
Chiquet, C., Maurin, M., Altayrac, J., Aptel, F., Boisset, S., Vandenesch, F., Cornut, P. L., Romanet, J. P., Gain, P., & Carricajo, A. (2015). Correlation between clinical data and antibiotic resistance in coagulase-negative Staphylococcus species isolated from 68 patients with acute post-cataract endophthalmitis. Clinical Microbiology and Infection, 21(6), 592.e1-592.e8. https://doi.org/https://doi.org/10.1016/j.cmi.2015.01.028
Cidral, T. A., Carvalho, M. C., Figueiredo, A. M. S., & de Melo, M. C. N. (2015). Emergence of methicillin-resistant coagulase-negative staphylococci resistant to linezolid with rRNA gene C2190T and G2603T mutations. Apmis, 123(10), 867–871. https://doi.org/10.1111/apm.12426
Committee, T. E., Testing, A. S., Changes, N., & Pseudomonas, E. (2015). European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. Http://Www.Eucast.Org/Fileadmin/Src/Media/PDFs/EUCAST_files/Breakpoint_tables/V_5.0_Breakpoint_Table_01.Pdf, 0–77. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf
De Almeida, L. M., De Araújo, M. R. E., Sacramento, A. G., Pavez, M., De Souza, A. G., Rodrigues, F., Gales, A. C., Lincopan, N., Sampaio, J. L. M., & Mamizuka, E. M. (2013). Linezolid resistance in brazilian staphylococcus hominis strains isassociated with L3 and 23s rRNA ribosomal mutations. Antimicrobial Agents and Chemotherapy, 57(8), 4082–4083. https://doi.org/10.1128/AAC.00437-13
de Oliveira, A., Pereira, V. C., Pinheiro, L., Riboli, D. F. M., Martins, K. B., & de Lourdes Ribeiro de Souza da Cunha, M. (2016). Antimicrobial resistance profile of planktonic and biofilm cells of staphylococcus aureus and coagulase-negative staphylococci. International Journal of Molecular Sciences, 17(9), 1–12. https://doi.org/10.3390/ijms17091423
Decousser, J.-W., Desroches, M., Bourgeois-Nicolaos, N., Potier, J., Jehl, F., Lina, G., Cattoir, V., Vandenesh, F., & Doucet-Populaire, F. (2015). Susceptibility trends including emergence of linezolid resistance among coagulase-negative staphylococci and meticillin-resistant Staphylococcus aureus from invasive infections. International Journal of Antimicrobial Agents, 46(6), 622–630. https://doi.org/10.1016/j.ijantimicag.2015.07.022
Diseases, N. I. of D. and D. and K. (2017). Chloramphenicol. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
Drago, L. (2019). Chloramphenicol resurrected: A journey from antibiotic resistance in eye infections to biofilm and ocular microbiota. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090278
Fadlilah, U., Hasmono, D., Wibisono, Y. A., Melinda, M., Airlangga, U., & Hospital, M. W. (2016). Antibiogram Study And Antibiotic Use Evaluation Using Gyssen Method in Patients with Diabetic Foot. Folia Medica Indonesiana, 52(3), 198–208.
Falagas, M. E., Tansarli, G. S., Rafailidis, P. I., Kapaskelis, A., & Vardakas, K. Z. (2012). Impact of antibiotic MIC on infection outcome in patients with susceptible gram-negative bacteria: A systematic review and meta-analysis. Antimicrobial Agents and Chemotherapy, 56(8), 4214–4222. https://doi.org/10.1128/AAC.00663-12
Falcone, M., Russo, A., Pompeo, M. E., Vena, A., Marruncheddu, L., Ciccaglioni, A., Grossi, P., Mancini, C., Novelli, A., Stefani, S., & Venditti, M. (2012). Retrospective case-control analysis of patients with staphylococcal infections receiving daptomycin or glycopeptide therapy. International Journal of Antimicrobial Agents, 39(1), 64–68. https://doi.org/10.1016/j.ijantimicag.2011.09.011
Feng, Z.-H., Fan, L., Yang, J., Huo, X.-Y., Guo, Y., Zhang, Y., & Lan, C.-H. (2019). Mutant selection window of clarithromycin for clinical isolates of Helicobacter pylori. BMC Microbiology, 19(1), 1–7.
Fernández-Villa, D., Aguilar, M. R., & Rojo, L. (2019). Folic acid antagonists: antimicrobial and immunomodulating mechanisms and applications. International Journal of Molecular Sciences, 20(20), 4996.
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235.
Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577.
Frickmann, H., Hahn, A., Skusa, R., Mund, N., Viehweger, V., Köller, T., Köller, K., Schwarz, N. G., Becker, K., Warnke, P., & Podbielski, A. (2018). Comparison of the etiological relevance of Staphylococcus haemolyticus and Staphylococcus hominis. European Journal of Clinical Microbiology and Infectious Diseases, 37(8), 1539–1545. https://doi.org/10.1007/s10096-018-3282-y
Gianvecchio, C., Lozano, N. A., Henderson, C., Kalhori, P., Bullivant, A., Valencia, A., Su, L., Bello, G., Wong, M., & Cook, E. (2019). Variation in mutant prevention concentrations. Frontiers in Microbiology, 10, 42.
Greenhalgh, T., Thorne, S., & Malterud, K. (2018). Time to challenge the spurious hierarchy of systematic over narrative reviews? European Journal of Clinical Investigation, 48(6).
Humphries, R. M., A, Ambler, J., B, Mitchell, S. L., C, Castanheira, M., D, Dingle, T., E, F., Hindler, J. A., G, Koeth, L., H, & Sei, K. (2018). CLSI Methods Development and Standardization Working Group Best Practices for Evaluation of Antimicrobial Susceptibility Tests. Journal of Clinical Microbiology, 56(4), 1–10.
Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current Opinion in Microbiology, 51, 72–80.
Jenner, L., Starosta, A. L., Terry, D. S., Mikolajka, A., Filonava, L., Yusupov, M., Blanchard, S. C., Wilson, D. N., & Yusupova, G. (2013). Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3812–3816. https://doi.org/10.1073/pnas.1216691110
Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology, Clinical Pharmacology, 33(3), 300.
Kowalska-krochmal, B., & Dudek-wicher, R. (2021). The Minimum Inhibitory Concentration of Antibiotics : Methods , Interpretation , Clinical Relevance.
Lahiri, S. D., & Alm, R. A. (2016). Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: involvement of other PBPs. Journal of Antimicrobial Chemotherapy, 71(11), 3050–3057.
Lee, H., Yoon, E.-J., Kim, D., Kim, J. W., Lee, K.-J., Kim, H. S., Kim, Y. R., Shin, J. H., Shin, J. H., & Shin, K. S. (2018). Ceftaroline resistance by clone-specific polymorphism in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 62(9), e00485-18.
Luyt, C.-E., Bréchot, N., Trouillet, J.-L., & Chastre, J. (2014). Antibiotic stewardship in the intensive care unit. Critical Care, 18(5), 1–12.
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/https://doi.org/10.1111/j.1469-0691.2011.03570.x
Maria, C., Carvalho, I., A, A. M. S., Celeste, M., & Melo, N. D. E. (2015). Emergence of methicillin-resistant coagulase-negative staphylococci resistant to linezolid with rRNA gene C2190T and G2603T mutations. 22(2), 867–871. https://doi.org/10.1111/apm.12426
Martinez, S. R., Rocca, D. M., Aiassa, V., & Becerra, M. C. (2016). Linezolid as an eradication agent against assembled methicillin-resistant Staphylococcus aureus biofilms. Rsc Advances, 6(103), 101023–101028.
Mendoza-Olazarán, S., Morfin-Otero, R., Rodríguez-Noriega, E., Llaca-Díaz, J., Flores-Treviño, S., González-González, G. M., Villarreal-Treviño, L., & Garza-González, E. (2013). Microbiological and Molecular Characterization of Staphylococcus hominis Isolates from Blood. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061161
Mendoza-Olazarán, S., Morfin-Otero, R., Villarreal-Trevino, L., Rodriguez-Noriega, E., Llaca-Diaz, J., Camacho-Ortiz, A., González, G. M., Casillas-Vega, N., & Garza-González, E. (2015). Antibiotic susceptibility of biofilm cells and molecular characterisation of staphylococcus hominis isolates from blood. PLoS ONE, 10(12), 1–13. https://doi.org/10.1371/journal.pone.0144684
Menezes, E., Simões, C., Matt, D., & Cabral, O. (2019). Staphylococcus hominis subspecies can be identified by SDS-PAGE or MALDI-TOF MS profiles. 1–7. https://doi.org/10.1038/s41598-019-48248-4
Michael, A., Kelman, T., & Pitesky, M. (2020). Overview of quantitative methodologies to understand antimicrobial resistance via minimum inhibitory concentration. Animals, 10(8), 1–17. https://doi.org/10.3390/ani10081405
Morgenstern, M., Erichsen, C., Hackl, S., Mily, J., Militz, M., Friederichs, J., Hungerer, S., Bühren, V., Moriarty, T. F., Post, V., Richards, R. G., & Kates, S. L. (2016). Antibiotic resistance of commensal Staphylococcus aureus and coagulase-negative staphylococci in an international cohort of surgeons: A prospective point-prevalence study. In PLoS ONE (Vol. 11, Issue 2). https://doi.org/10.1371/journal.pone.0148437
Mouton, J. W., Brown, D. F. J., Apfalter, P., Canton, R., Giske, C. G., Ivanova, M., MacGowan, A. P., Rodloff, A., Soussy, C.-J., & Steinbakk, M. (2012). The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clinical Microbiology and Infection, 18(3), E37–E45.
Mulla, S., Kumar, A., & Rajdev, S. (2016a). Comparison of MIC with MBEC Assay for <i>in Vitro</i> Antimicrobial Susceptibility Testing in Biofilm Forming Clinical Bacterial Isolates. Advances in Microbiology, 06(02), 73–78. https://doi.org/10.4236/aim.2016.62007
Mulla, S., Kumar, A., & Rajdev, S. (2016b). Comparison of MIC with MBEC assay for in vitro antimicrobial susceptibility testing in biofilm forming clinical bacterial isolates. Advances in Microbiology, 6(02), 73.
Narita, M., Shibahara, T., Takano, N., Fujii, R., Okuda, K., & Ishihara, K. (2016). Antimicrobial Susceptibility of Microorganisms Isolated from Periapical Periodontitis Lesions. The Bulletin of Tokyo Dental College, 57(3), 133–142. https://doi.org/10.2209/tdcpublication.2015-0018
Natsis, N. E., & Cohen, P. R. (2018). Coagulase-Negative Staphylococcus Skin and Soft Tissue Infections. American Journal of Clinical Dermatology, 19(5), 671–677. https://doi.org/10.1007/s40257-018-0362-9
Oliveira, A. De, Pereira, V. C., Pinheiro, L., Flávio, D., & Riboli, M. (2016). Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci. 1–12. https://doi.org/10.3390/ijms17091423
Öztürk, H., Ozkirimli, E., & Özgür, A. (2015). Classification of beta-lactamases and penicillin binding proteins using ligand-centric network models. PloS One, 10(2), e0117874.
Paré, G., Trudel, M.-C., Jaana, M., & Kitsiou, S. (2015). Synthesizing information systems knowledge: A typology of literature reviews. Information & Management, 52(2), 183–199. https://doi.org/https://doi.org/10.1016/j.im.2014.08.008
Pereira, E. M., de Mattos, C. S., dos Santos, O. C., Ferreira, D. C., de Oliveira, T. L. R., Laport, M. S., de Oliveira Ferreira, E., & dos Santos, K. R. N. (2019). Staphylococcus hominis subspecies can be identified by SDS-PAGE or MALDI-TOF MS profiles. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-48248-4
Pereira, P. S., Maia, A. J., Duarte, A. E., Oliveira-Tintino, C. D. M., Tintino, S. R., Barros, L. M., Vega-Gomez, M. C., Rolón, M., Coronel, C., Coutinho, H. D. M., & da Silva, T. G. (2018). Cytotoxic and anti-kinetoplastid potential of the essential oil of Alpinia speciosa K. Schum. Food and Chemical Toxicology, 119(January), 387–391. https://doi.org/10.1016/j.fct.2018.01.024
Perutelli, A., Tascini, C., Domenici, L., Garibaldi, S., Baroni, C., Cecchi, E., & Salerno, M. G. (2018). Safety and efficacy of tigecycline in complicated and uncomplicated pelvic inflammatory disease. European Review for Medical and Pharmacological Sciences, 22(11), 3595–3601. https://doi.org/10.26355/EURREV_201806_15186
Prescott, J. F. (2013). Beta‐lactam antibiotics: cephalosporins. Antimicrobial Therapy in Veterinary Medicine, 153–173.
Rehman, S., Ghauri, S. M., & Sabri, A. N. (2016). Impact of plant extracts and antibiotics on biofilm formation of clinical isolates from otitis media. Jundishapur Journal of Microbiology, 9(1). https://doi.org/10.5812/jjm.29483
Rezaie, A., Pimentel, M., & Rao, S. S. (2016). How to test and treat small intestinal bacterial overgrowth: an evidence-based approach. Current Gastroenterology Reports, 18(2), 1–11.
Rodríguez-Gascón, A., Solinís, M. Á., & Isla, A. (2021). The role of PK/PD analysis in the development and evaluation of antimicrobials. Pharmaceutics, 13(6), 833.
Rodriguez-guerineau, L., Salvia-roigés, M. D., León-lozano, M., Rodríguez-miguélez, J. M., & Figueras-aloy, J. (2013). Combination of vancomycin and rifampicin for the treatment of persistent coagulase-negative staphylococcal bacteremia in preterm neonates. 170, 693–697. https://doi.org/10.1007/s00431-012-1927-x
Sader, H. S., Carvalhaes, C. G., Streit, J. M., Arends, S. J. R., & Mendes, R. E. (2021a). Antimicrobial activity of dalbavancin against clinical isolates of coagulase-negative staphylococci from the USA and Europe stratified by species.pdf. Journal of Global Antimicrobial Resistance, 24, 48–52. https://doi.org/10.1016/j.jgar.2020.11.020
Sader, H. S., Carvalhaes, C. G., Streit, J. M., Arends, S. J. R., & Mendes, R. E. (2021b). Antimicrobial activity of dalbavancin against clinical isolates of coagulase-negative staphylococci from the USA and Europe stratified by species. Journal of Global Antimicrobial Resistance, 24, 48–52.
Sader, H. S., Farrell, D. J., Flamm, R. K., Streit, J. M., Mendes, R. E., & Jones, R. N. (2016). Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative Staphylococcus causing infection in US hospitals. Diagnostic Microbiology and Infectious Disease, 85(1), 80–84. https://doi.org/10.1016/j.diagmicrobio.2016.01.010
Satibi, S., Faradiba, F., Aditama, H., & Prasetyo, S. D. (2022). Identification of Problems or Barriers in Medicine Procurement Process in Low-and Lower-Middle-Income Countries: A Narrative Review. Indonesian Journal of Pharmacy.
Seng, R., Kitti, T., Thummeepak, R., Kongthai, P., Leungtongkam, U., Wannalerdsakun, S., & Sitthisak, S. (2017). Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE, 12(8), 1–13. https://doi.org/10.1371/journal.pone.0184172
Seng, R., Leungtongkam, U., Thummeepak, R., Chatdumrong, W., & Sitthisak, S. (2017). High prevalence of methicillin-resistant coagulase-negative staphylococci isolated from a university environment in Thailand. Int Microbiol, 20(2), 65–73.
Ślusarczyk, R., Bielejewska, A., Bociek, A., & Bociek, M. (2018). Resistance to ceftaroline-2018 review. European Journal of Biological Research, 8(3), 112–120.
Soroush, S., Jabalameli, F., Taherikalani, M., Eslampour, M. A., Beigverdi, R., & Emaneini, M. (2017). Characterization of biofilm formation, antimicrobial resistance, and staphylococcal cassette chromosome mec analysis of methicillin resistant Staphylococcus hominis from blood cultures of children. Revista Da Sociedade Brasileira de Medicina Tropical, 50(3), 329–333. https://doi.org/10.1590/0037-8682-0384-2016
Stringham, J. D., Relhan, N., Miller, D., & Flynn, H. W. (2017). Trends in fluoroquinolone nonsusceptibility among coagulase-negative Staphylococcus isolates causing endophthalmitis, 1995-2016. JAMA Ophthalmology, 135(7), 814–815.
Szczuka, E., Makowska, N., Bosacka, K., Słotwińska, A., & Kaznowski, A. (2016). Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus hominis strains isolated from clinical specimens. Folia Microbiologica, 61(2), 143–147.
Tao, H., Wang, J., Li, L., Zhang, H.-Z., Chen, M.-P., & Li, L. (2017). Incidence and antimicrobial sensitivity profiles of Normal conjunctiva bacterial Flora in the central area of China: a hospital-based study. Frontiers in Physiology, 8, 363.
Wróbel, A., Maliszewski, D., Baradyn, M., & Drozdowska, D. (2019). Trimethoprim: An old antibacterial drug as a template to search for new targets. Synthesis, biological activity and molecular modeling study of novel trimethoprim analogs. Molecules, 25(1), 116.
Yang, Q., Li, X., Jia, P., Giske, C., Kahlmeter, G., Turnidge, J., Yu, Y., Lv, Y., Wang, M., Sun, Z., Lin, J., Li, Y., Zheng, B., Hu, F., Guo, Y., Chen, Z., Li, H., Zhang, G., Zhang, J., … Xu, Y. (2021). Determination of norvancomycin epidemiological cut-off values (ECOFFs) for Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus hominis. Journal of Antimicrobial Chemotherapy, 76(1), 152–159. https://doi.org/10.1093/JAC/DKAA414
Zárate, S. G., Claure, M. L. D. la C., Benito-Arenas, R., Revuelta, J., Santana, A. G., & Bastida, A. (2018). Overcoming aminoglycoside enzymatic resistance: design of novel antibiotics and inhibitors. Molecules, 23(2), 284.
Zidour, M., Belguesmia, Y., Cudennec, B., Grard, T., Flahaut, C., Souissi, S., & Drider, D. (2019). Genome Sequencing and Analysis of Bacillus pumilus ICVB403 Isolated from Acartia tonsa Copepod Eggs Revealed Surfactin and Bacteriocin Production: Insights on Anti-Staphylococcus Activity. In Probiotics and Antimicrobial Proteins (Vol. 11, Issue 3, pp. 990–998). https://doi.org/10.1007/s12602-018-9461-4
How to Cite
Meriyani, H., Sanjaya, D. A., Juanita, R. A., & Ketut Ernawati, D. (2023). A Narrative Review of Staphylococcus hominis Resistance Pattern: Multidrug- and Possible Extensively Drug-Resistance. Indonesian Journal of Pharmacy, 34(3), 339–356. https://doi.org/10.22146/ijp.5429
Review Article