L-proline as Co-crystal Forming Amino Acid for Enhanced Dissolution Rate of Lamotrigine: Development of Buccal Tablet

  • Howaida Abdelrahman Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
  • Ebtesam Essa Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
  • Gamal El Maghraby Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
  • Mona Arafa Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
Keywords: Lamotrigine; L-proline; Co-crystallization; Dissolution efficiency; Oral dispersible tablet


Lamotrigine is an antiepileptic drug with slow dissolution rate which can reduce its oral bioavailability. In addition, it was reported to have first pass metabolism. Accordingly, the aim of this work was to enhance its dissolution rate utilizing co-crystallization technique to be suitable for incorporation in buccal dosage form. L-proline was selected as co-crystal co-former for enhancing dissolution in addition to its beneficial anticonvulsant properties. Formulations containing lamotrigine and L-proline at different molar ratios were prepared using ethanol assisted co-grinding. The prepared formulations were characterized using FTIR, X-Ray powder diffraction, differential scanning calorimetry and dissolution studies. The formulation recorded the highest dissolution rate was incorporated in fast disintegrating tablet for buccal use.  Characterization techniques suggested the formation of lamotrigine-l-proline co-crystals with 1:2 molar ratio being optimum for interaction. This interaction resulted in significant enhancement in dissolution rate with the ratio of lamotrigine to proline at molar ratio of 1:4 showed greatest dissolution rate (% DE= 80.57). The prepared tablet utilizing lamotrigine and L-proline at molar ratio of 1:4 showed fast disintegration and rapid dissolution rate compared with control tablet containing lamotrigine alone. The study suggested L-proline as an efficient co-crystal co-former for enhancing dissolution rate of lamotrigine for buccal delivery.  


Abdelquader, M. M., Essa, E. A., & El Maghraby, G. M. (2019). Inhibition of co-crystallization of olmesartan medoxomil and hydrochlorothiazide for enhanced dissolution rate in their fixed dose combination. AAPS PharmSciTech, 20, 1-12.
Arafa, M. F., El-Gizawy, S. A., Osman, M. A., & El Maghraby, G. M. (2016). Sucralose as co-crystal co-former for hydrochlorothiazide: development of oral disintegrating tablets. Drug development and industrial pharmacy, 42(8), 1225-1233.
Arafa, M. F., El-Gizawy, S. A., Osman, M. A., & El Maghraby, G. M. (2018). Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets. Pharmaceutical development and technology, 23(5), 454-463.
Basavoju, S., Boström, D., & Velaga, S. P. (2008). Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharmaceutical research, 25, 530-541.
Budiman, A., Nurlatifah, E., & Amin, S. (2016). Enhancement of solubility and dissolution rate of glibenclamide by cocrystal approach with solvent drop grinding method. Int J Curr Pharm Rev Res, 7(5), 248-50.
Chappa, P., Maruthapillai, A., Tamilselvi, M., Devikala, S., & Selvi, J. A. (2019). Co-crystallisation of Lamotrigine with diprotic acids: synthesis, single crystal analysis, and in-vitro evaluation. Materials Today: Proceedings, 14, 504-513.
Dengale, S. J., Grohganz, H., Rades, T., & Löbmann, K. (2016). Recent advances in co-amorphous drug formulations. Advanced drug delivery reviews, 100, 116-125.
El Maghraby, G. M., & Elsergany, R. N. (2014). Fast disintegrating tablets of nisoldipine for intra-oral administration. Pharmaceutical development and technology, 19(6), 641-650.
El-Gizawy, S. A., Osman, M. A., Arafa, M. F., & El Maghraby, G. M. (2015). Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. International journal of pharmaceutics, 478(2), 773-778.
Elkholy, N. E., Sultan, A. A., Elosaily, G. H., & El Maghraby, G. M. (2020). Acetone-assisted co-processing of meloxicam with amino acids for enhanced dissolution rate. Pharmaceutical Development and Technology, 25(7), 882-891.
Essa, E. A., & Dwaikat, M. (2015). Enhancement of Simvastatin dissolution by surface solid dispersion: effect of carriers and wetting agents. Journal of Applied Pharmaceutical Science, 5(1), 046-053.
Essa, E. A., Elbasuony, A. R., Abdelaziz, A. E., & El Maghraby, G. M. (2019). Co-crystallization for enhanced dissolution rate of bicalutamide: preparation and evaluation of rapidly disintegrating tablets. Drug Development and Industrial Pharmacy, 45(8), 1215-1223.
Jain, C. P., & Naruka, P. S. (2009). Formulation and evaluation of fast dissolving tablets of valsartan. Int J Pharm Pharm Sci, 1(1), 219-226.
Karagianni, A., Malamatari, M., & Kachrimanis, K. (2018). Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics, 10(1), 18.
Khan, K. A. (1975). The concept of dissolution efficiency. Journal of pharmacy and pharmacology, 27(1), 48-49.
Kour, P., Kumar, M., Kataria, M. K., & Bilandi, A. (2015). Dissolution rate enhancement of pioglitazone by solid dispersion technique. IAJPR, 5(7), 2664-81.
Kuang, W., Ji, S., Wei, Y., Zhang, J., & Lan, P. (2020). A new 1: 1 cocrystal of lamotrigine and 1, 2, 3, 6-hydrophthalimide: discovery, characterization, and construction of ternary phase diagrams. CrystEngComm, 22(15), 2681-2688.
Mashru, R., Sutariya, V., Sankalia, M., & Sankalia, J. (2005). Transbuccal delivery of lamotrigine across porcine buccal mucosa: in vitro determination of routes of buccal transport. J Pharm Pharm Sci, 8(1), 54-62.
Nalte, Y. K., Arsul, V. A., Shep, S. G., & Bothara, S. B. (2015). Solubility enhancement of nevirapine by cocrystallisation technique. J. Pharm. Res, 9(8), 556-561.
Nugrahani, I., & Jessica, M. A. (2021). Amino acids as the potential co-former for co-crystal development: a review. Molecules, 26(11), 3279.
Nugrahani, I., Kumalasari, R. A., Auli, W. N., Horikawa, A., & Uekusa, H. (2020). Salt cocrystal of diclofenac sodium-l-proline: Structural, pseudopolymorphism, and pharmaceutics performance study. Pharmaceutics, 12(7), 690.
Othman, M. F., Jamburi, N., Anuar, N., Rahim, S. A., & Rohalim, N. H. (2016). Ibuprofen-amino acids co-crystal screening via co-grinding methods. In MATEC Web of Conferences (Vol. 69, p. 03002). EDP Sciences.
Pant, P., Bansal, K., Rao, P. R., Padhee, K., Sathapathy, A., & Kochhar, P. S. (2011). Micronization: An efficient tool for dissolution enhancement of Dienogest. Int J Drug Dev Res, 3(2), 329-33.
Patel, K. V., Patel, N. D., Dodiya, H. D., & Shelat, P. K. (2011). Buccal bioadhesive drug delivery system: an overview. Int J Pharm Bio Arch, 2(2), 600-9.
Sanphui, P., & Rajput, L. (2014). Tuning solubility and stability of hydrochlorothiazide co-crystals. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 70(1), 81-90.
Sarhan, S., & Seiler, N. (1989). Proline and proline derivatives as anticonvulsants. General Pharmacology, 20(1), 53-60.
Shimpi, M. R., Childs, S. L., Boström, D., & Velaga, S. P. (2014). New cocrystals of ezetimibe with L-proline and imidazole. CrystEngComm, 16(38), 8984-8993.
Silva, J. L., Santos, P. P., Andre, V., & Galego, F. (2016). MS32-P7 New cocrystals of Flurbiprofen and Proline: structural effect of enantiomorphism. Foundations of Crystallography, 72, s356.
Song, Y., Wang, L. Y., Liu, F., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2019). Simultaneously enhancing the in vitro/in vivo performances of acetazolamide using proline as a zwitterionic coformer for cocrystallization. CrystEngComm, 21(19), 3064-3073.
Srikanth, M. V., Babu, G. V. M. M., Rao, N. S., Sunil, S. A., Balaji, S., & Ramanamurthy, K. V. (2010). Dissolution rate enhancement of poorly soluble bicalutamide using β-cyclodextrin inclusion complexation. Int J Pharm Pharm Sci, 2(1), 191-198.
Srinija, K., & Lakshmi, P. K. (2016). Novel core in cup (In-lay) tablets of lamotrigine for mucoadhesive drug delivery system. International Current Pharmaceutical Journal, 5(2), 9-13.
Teng, R., Wang, L., Chen, M., Fang, W., Gao, Z., Chai, Y., ... & Bao, Y. (2020). Amino acid based pharmaceutical cocrystals and hydrate cocrystals of the chlorothiazide: Structural studies and physicochemical properties. Journal of Molecular Structure, 1217, 128432.
Tumanova, N., Tumanov, N., Fischer, F., Morelle, F., Ban, V., Robeyns, K., ... & Leyssens, T. (2018). Exploring polymorphism and stoichiometric diversity in naproxen/proline cocrystals. CrystEngComm, 20(45), 7308-7321.
United States Pharmacopiae National Formulary 24, 2000. United States Pharmacopial Convention, Rockville, MD.
Wang, L., Tan, B., Zhang, H., & Deng, Z. (2013). Pharmaceutical cocrystals of diflunisal with nicotinamide or isonicotinamide. Organic Process Research & Development, 17(11), 1413-1418.
Wang, L. Y., Yu, Y. M., Jiang, F. B., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2020). The first zwitterionic cocrystal of indomethacin with amino acid showing optimized physicochemical properties as well as accelerated absorption and slowed elimination in vivo. New Journal of Chemistry, 44(10), 3930-3939.
How to Cite
Abdelrahman, H., Essa, E., El Maghraby, G., & Arafa, M. (2023). L-proline as Co-crystal Forming Amino Acid for Enhanced Dissolution Rate of Lamotrigine: Development of Buccal Tablet . Indonesian Journal of Pharmacy, 34(4), 574-583. https://doi.org/10.22146/ijp.6867
Research Article