Abstract
AbstrakSustainable Development Goals (SDGs) poin enam yang berfokus pada bidang air minum, sanitasi, dan kebersihan lingkungan memiliki target untuk menciptakan akses air minum dan sanitasi layak bagi semua orang dan memastikan terjaganya kuantitas air bersih. Guna mencapainya, Indonesia menghadapi berbagai tantangan terutama disebabkan adanya ketimpangan dan perbedaan kemampuan ekonomi dalam pelaksanaan program-program bidang air minum dan sanitasi di daerah. Tulisan ini bertujuan untuk mengelompokkan provinsi-provinsi di Indonesia berdasarkan kesamaan karakteristiknya pada variabel air minum layak, sanitasi layak, Indeks Kualitas Air (IKA), dan tingkat kemiskinan menggunakan k-means clustering. Hasilnya, terbentuk lima buah klaster, dengan klaster satu hingga lima secara berurutan menunjukkan peringkat prioritas dari yang teratas hingga terbawah. Penentuan urutan prioritas klaster tersebut kemudian dijadikan sebagai dasar dalam melakukan perbandingan deskriptif-statistik Dana Alokasi Khusus (DAK) Fisik pada masing-masing klaster untuk menilai efesiensi DAK Fisik 2020, yang ternyata sudah cukup baik dalam menargetkan daerah-daerah sesuai urutan prioritasnya di bidang air minum dan sanitasi.
Kata kunci: k-means clustering, air, sanitasi, sustainable development goals
Abstract
SDGs 6, which focus on water, sanitation, and hygiene, aims to create acess to drinking water and proper sanitation for all and ensuring the quality of clean water is maintained. In achieving this, Indonesia faces various challenges, mainly due to inequality and differences in economic capacity in implementing programs in the water and sanitation sector in the regions. This paper aims to group provinces in Indonesia based on their similarity of characteristics in proper drinking water, proper sanitation, IKA, and poverty level indicators using k-means clustering. As a result, five clusters were formed, with clusters one to five sequentially showed priority rankings from the highest to the lowest. The priority order of the clusters determined before, is then used as the basis for conducting descriptive statistical comparisons of the DAK Fisik allocation in each cluster to assess the efficiency of DAK Fisik allocation in 2020, which turned out to be quite good at targeting regions according to their priority order in the drinking water and sanitation sector.
Keywords: k-means clustering, water, sanitation, sustainable development goals
References
Booth, A., Purnagunawan, R. M., & Satriawan, E. (2019). Towards a Healthy Indonesia? Bulletin of Indonesian Economic Studies, 55(2), 133–155. https://doi.org/10.1080/00074918.2019.1639509
Dini, S. K., & Fauzan, A. (2020). Clustering Provinces in Indonesia based on Community Welfare Indicators. EKSAKTA: Journal of Sciences and Data Analysis, 1(1), 56–63. https://doi.org/10.20885/eksakta.vol1.iss1.art9
Elysia, V. (2018). Air Dan Sanitasi : Dimana Posisi Indonesia. Peran Matematika, Sains, Dan Teknologi Dalam Mencapai Tujuan Pembangunan Berkelanjutan/SDGs, 157–179. http://repository.ut.ac.id/7467/
Garriga, R. G., & Foguet, A. P. (2013). Water, sanitation, hygiene and rural poverty: Issues of sector monitoring and the role of aggregated indicators. Water Policy, 15(6), 1018–1045. https://doi.org/10.2166/wp.2013.037
Harjanto, T. D., Vatresia, A., & Faurina, R. (2021). Analisis Penetapan Skala Prioritas Penanganan Balita Stunting Menggunakan Metode DBScan Clustering. Jurnal Rekursif, 9(1), 30–42.
Juanda, B., & Handra, H. (2017). Reformasi Mekanisme Dana Alokasi Khusus (DAK) Untuk Mendorong Pertumbuhan Dan Pemerataan Pembangunan Di Indonesia. Kolaborasi Masyarakat Dan Pelayanan Untuk Kesejahteraan (KOMPAK), 2, 34.
Kementerian Lingkungan Hidup dan Kehutanan. (2021). PPID | Kementrian Lingkungan Hidup dan Kehutanan | Indeks Kualitas Lingkungan Hidup Indonesia Tahun 2020 Meningkat. http://ppid.menlhk.go.id/berita/siaran-pers/5835/indeks-kualitas-lingkungan-hidup-indonesia-tahun-2020-meningkat
Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2022). Kebijakan dak 2022 bidang air minum dan sanitasi.
Kılıç, Z. (2020). The importance of water and conscious use of water. In International Journal of Hydrology (Vol. 4, Issue 5, pp. 239–241). https://doi.org/10.15406/ijh.2020.04.00250
Kustanto, A. (2020). Water quality in Indonesia: The role of socioeconomic indicators. Jurnal Ekonomi Pembangunan, 18(1), 47–62. https://doi.org/10.29259/jep.v18i1.11509
Liyanage, C. P., & Yamada, K. (2017). Impact of population growth on the water quality of natural water bodies. Sustainability (Switzerland), 9(8). https://doi.org/10.3390/su9081405
Manshur, A. (2020). Reviewing Specific Grant in 2015-2019 Period: Consistency and Quality Matters. Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, 4(3), 270–285. https://doi.org/10.36574/jpp.v4i3.122
Mayasari, T. R. (2020). Pengelompokkan Provinsi Berdasarkan Variabel Kesehatan Lingkungan Dan Pengaruhnya Terhadap Kemiskinan Di Indonesia Tahun 2018. Jurnal Siger Matematika, 1(1), 24–30. https://doi.org/10.23960/jsm.v1i1.2471
Prendergast, A. J., & Humphrey, J. H. (2014). The stunting syndrome in developing countries. Paediatrics and International Child Health, 34(4), 250–265. https://doi.org/10.1179/2046905514Y.0000000158
Primartha, R. (2018). Belajar Machine Learning Teori dan Praktik. Informatika Bandung.
Putra, H. S., & Rianto, N. (2016). Pengaruh Akses Air Bersih Terhadap Kemiskinan Di Indonesia : Pengujian Data Rumahtangga. 65–76.
Seckler, D., Randolph, B., & Amarasinghe, U. (1999). of Water Resources Development Water Scarcity in the Twenty- first Century. International Journal of Water Resources Development, 15(1–2), 29–42.
Shuang, Q., Liu, H. J., & Porse, E. (2019). Review of the quantitative resilience methods in water distribution networks. Water (Switzerland), 11(6), 1–27. https://doi.org/10.3390/w11061189
Swe, K. T., Rahman, M. M., Rahman, M. S., Teng, Y., Abe, S. K., Hashizume, M., & Shibuya, K. (2021). Impact of poverty reduction on access to water and sanitation in low- and lower-middle-income countries: country-specific Bayesian projections to 2030. Tropical Medicine and International Health, 26(7), 760–774. https://doi.org/10.1111/tmi.13580
Tan, P. N., Steinbach, M., Kumar, V., & et al. (2014). Introduction to Data Mining, First Edition. In Pearson New International Edition (Issue September).
UNEP. (2017). GOAL 6: Clean water and sanitation | UNEP - UN Environment Programme. https://www.unep.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-6%0Ahttps://www.unenvironment.org/explore-topics/sustainable-development-goals/why-do-sustainable-development-goals-matter/goal-6
UNICEF. (2022). Indonesia: Nearly 70 per cent of household drinking water sources contaminated by faecal waste. Unicef. https://www.unicef.org/indonesia/press-releases/indonesia-nearly-70-cent-household-drinking-water-sources-contaminated-faecal-waste
Wahyuni, A. Y., Juanda, B., & Purnamadewi, Y. L. (2021). Analisis Pengaruh Alokasi DAK Masing-Masing Bidang Terhadap Tingkat Kemiskinan di Kabupaten Pandeglang dan Kabupaten Lebak. Jurnal Wilayah Dan Lingkungan, 9(1), 1–17. https://doi.org/10.14710/jwl.9.1.1-17
Yesi, D., & Juairiyah, O. (2021). Sebaran tingkat kemiskinan dan tingkat akses air bersih di Sumatera Selatan. Dinamika Lingkungan Indonesia, 8(1), 12. https://doi.org/10.31258/dli.8.1.p.12-16