Research article
Vol 15 No 1 (2021): Volume 15, Number 1, 2021
Preparasi katalis MgO/C dari pirolisis polimer berbasis magnesium salisilat dan aplikasinya untuk reaksi transesterifikasi
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
Abstract
The objective of the study is to produce carbon-based magnesium oxide (MgO) solid base catalyst by pyrolysis of phenolic resin and to examine the material effectiveness as a catalyst for transesterification reaction. The phenolic resins were prepared by polymerization process of phenol, derivative salicylic acid (magnesium salicylate), and formaldehyde aqueous solution under acidic condition using H2SO4 as catalyst. The molar ratio of magnesium salicylate:phenol:formaldehyde was 0.33:0.67:2.80. Carbon-based magnesium oxide solid base catalyst (MgO/C) was produced from phenolic resins via physical activation process using steam at 850°C. Material was characterized using N2-sorption analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Pyrolysis process for carbon formation resulted in 75% burn-off. The specific surface area of catalyst was 494 m2/g and the presence of MgO was confirmed by XRD diffraction pattern (2θ position of 36-43°, 61-63°, dan 74-78° according to JCPDS No.89-7746) and SEM image. Characteristic comparison of MgO/C with carbon produced from phenol formaldehyde resin (without magnesium salicylate) corroborate the finding that MgO/C was achieved. The catalyst was tested for transesterification reaction between palm oil and methanol. Conversion of 28.3% was achieved at temperature of 65 °C, reactant ratio of methanol: palm oil = 6:1 and reaction time of 2.5 hours. The activation energy of 6,444 cal/mol was obtained when evaluated in the range of 55-65 °C reaction temperature.
References
Ariyanto, T., 2010, Pembuatan Material Karbon Berpori dari Pirolisis Phenolic Resin sebagai Material Elektroda Superkapasitor, Tesis, Univ. Gadjah Mada, Yogyakarta.
Ariyanto, T., Prasetyo, I. and Rochmadi., 2012, Pengaruh struktur pori terhadap kapasitansi elektroda superkapasitor yang dibuat dari karbon nanopori, Reaktor, 14 (1), 25–32.
Bhaskara, P.T., 2021, Pembuatan Biodiesel Dari Minyak Kelapa Sawit Menggunakan Katalis MgO Terembankan Dalam Karbon Berbasis Polimer Magnesium Salisilat-Fenol-Formaldehid, Universitas Gadjah Mada, Yogyakarta.
Cimino, S., Apuzzo, J. and Lisi, L., 2019, MgO dispersed on activated carbon as water tolerant catalyst for the conversion of ethanol into butanol, Appl. Sci., 9, No. 1371, available at:https://doi.org/10.3390/ app9071371.
Ding, Y., Zhang, G., Wu, H., Hai, B. and Wang, L., 2001, Nanoscale magnesium hydroxide and magnesium oxide powders : Control over size , shape , and structure via hydrothermal synthesis, Chem. Mater., 13 (17), 435–440.
Glasel, J., Diao, J.Y., Feng, Z.B., Hilgart, M., Wolker, T., Su, D.S. and Etzold, B.J.M., 2015, Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction, Chem. Mater., 27 (16), 5719–5725.
Haidari, S., Kamarehie, B., Jafari, A., Birjandi, M. and Afrasyabi, S., 2016, Oxalic acid degradation from aqueous solution using ozonation process in the presence of magnesium oxide nanoparticles catalyst stabilized on activated carbon, Int. J. Environ. Health Eng., 5 (3), available at:https://doi.org/10.4103/2277-9183.196665.
Haus, A., Reitz, G., Boehmke, G. and Meister, M., 1981, Phenolic Formaldehyde-Salicylic Acid Condensation Products, United States Patent 4245083.
Natewong, P., Murakami, Y., Tani, H. and Asami, K., 2016, Effect of support material on MgO-based catalyst for production of new hydrocarbon bio-diesel, Am. Sci. J. Eng. Technol. Sci., 22 (1), 153–165.
Nur’aeni, D.A.K., 2019, Preparasi Dan Karakterisasi Katalis Komposit MgO-C Dari Pirolisis Polimer Magnesium Salicylate-Phenol-Formaldehyde : Pengaruh Rasio Reaktan, Universitas Gadjah Mada, Yogyakarta.
Pradana, Y.S., Hidayat, A., Prasetya, A. and Budiman, A., 2018, Application of coconut-shell activated carbon as heterogeneous solid catalyst for biodiesel synthesis, Defect Diffus. Forum, 382, 280–285.
Prasetyo, I., Mukti, N.I.F., Fahrurrozi, M. and Ariyanto, T., 2018, Removing ethylene by adsorption using cobalt oxide-loaded nanoporous carbon, ASEAN J. Chem. Eng., 18 (1), 9–16.
Prasetyo, I., Rochmadi, Ariyanto, T. and Yunanto, R., 2013, Simple method to produce nanoporous carbon for various applications by pyrolysis of specially synthesized phenolic resin, Indones. J. Chem., 13 (2), 95–100.
Safaei-Ghomi, J., Zahedi, S., Javid, M. and Ghasemzadeh, M., 2015, MgO Nanoparticles: an Efficient, Green and Reusable Catalyst for the One- pot Syntheses of 2,6-Dicyanoanilines and 1,3-Diarylpropyl Malononitriles under Different Conditions, J. Nanostructures, 5 (2), 153–160.
Savitri, S.D., Asri, N.P., Roesyadi, A., Budikarjono, K. and Suprapto., 2012, Kinetika Reaksi Transesetrifikasi Minyak Sawit dengan Katalis Single Promotor, Semin. Nas. Tek. Kim. Soebardjo Brotohardjono UPN “Veteran” Jawa Timur, Surabaya.
Singh, A., Aggrawal, S. and Lal, D., 2019, Effect of formaldehyde to phenol ratio in phenolic beads on pore structure, adsorption and mechanical properties of activated carbon spheres, Def. Sci. J., 69 (1), 46–52.
Siriwardane, I.W., Udangawa, R., de Silva, R.M., Kumarasinghe, A.R., Acres, R.G., Hettiarachchi, A., Amaratunga, G.A.J., et al., 2017, Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications, Mater. Des., 136, 127–136.
Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S. and Lin, L., 2019, Catalysis in biodiesel production - A review, Clean Energy, 3 (1), 2–23.
Ustinov, E.A. and Do, D.D., 2006, Adsorption in Slit Pores and Pore-size Distribution: A Molecular Layer Structure Theory, Adsorption, 24 (1), 1–16.