Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 0 No 0.1 (3000): ONLINE FIRST

Physical properties and GC/MS analysis of pyrolysis oil from tire and plastic waste (HDPE/high-density polyethylene and PP/polypropylene)

DOI
https://doi.org/10.22146/jrekpros.12342
Submitted
February 24, 2024
Published
June 7, 2024

Abstract

Pyrolysis is an innovative technology that can convert various types of waste into high-value products. Pyrolysis Oil (PO) can be used as an alternative fuel. The objective of this research aims to determine the physical properties and the content of chemical compounds in the pyrolysis oil of waste tire and plastic, which are then compare to the characteristics of commercial fuel. Pyrolysis was carried at 350℃ for 4 hours using motorcycle tire and plastic waste (HDPE and PP) as raw materials. The result shows that the physical properties of PO HDPE C are similar to gasoline with a density of 0.807 g/mL, dynamic viscosity of 0.623 cP, and kinematic viscosity of 0.771 cSt. However, its calorific value is still very low. PO PP C has a calorific value almost comparable to commercial fuel of 38.24 MJ/kg. Meanwhile for PO tires, the properties unqualified characteristics of fuel. GC/MS analysis shows that PO Tires C1 has a high content of olefins and aromatic compound. PO HDPE C has a high content of paraffin and olefin compound. Pyrolysis oil of tires and plastic waste have the potential to be used as fuel. Pyrolysis conditions to produce PO with characteristics similar to fuel.

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for fuel oils. Technical report.
  2. Ahadiat N, Semar D. 2022. The influence of olefin content in gasoline against deposit build up on intake valve of motor bike engine. Scientific Contributions Oil and Gas. 33(1):52–58. doi:10.29017/scog.33.1.948.
  3. Ahmad I, Khan MI, Khan H, Ishaq M, Tariq R, Gul K, Ahmad W. 2014. Pyrolysis study of polypropylene and polyethylene into premium oil products. International Journal of Green Energy. 12(7):663–671. doi:10.1080/15435075.2014. 880146.
  4. Bharath G, Hai A, Rambabu K, Banat F, Jayaraman R, Taher H, Bastidas-Oyanedel JR, Ashraf MT, Schmidt JE. 2020. Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass and Bioenergy. 135:105523. doi:10.1016/j.biombioe.2020. 105523.
  5. Dai L, Zhou N, Lv Y, Cheng Y, Wang Y, Liu Y, Cobb K, Chen P, Lei H, Ruan R. 2022. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Progress in Energy and Combustion Science. 93:101021. doi:10.1016/j.pecs.2 022.101021.
  6. Damayanti Z, Sudarti S, Yushardi Y. 2023. Analisis karakteristik fuel pirolisis sampah plastik berdasarkan jenis plastik yang digunakan: Review. Jurnal Inovasi Teknik Kimia. 8(1):26. doi:10.31942/inteka.v18i1.8092.
  7. Dusling K. Properties of common liquids at room temperature and pressure. https://kdusling.github.io/teaching/Applied-Fluids/PropertiesOfCommonLiquids.html.
  8. Energy Education. Kerosene. https://energyeducation.ca/encyclopedia/Kerosene.
  9. Environmental Protection Agency (EPA). 2021. Sources of greenhouse gas emissions. Technical report.
  10. Figueiredo MK, Romeiro GA, Damasceno RN. 2009. Low temperature conversion (LTC) of castor seeds—A study of the oil fraction (pyrolysis oil). Journal of Analytical and Applied Pyrolysis. 86(1):53–57. doi:10.1016/j.jaap.2009.04.0 06.
  11. Fulgencio-Medrano L, García-Fernández S, Asueta A, LopezUrionabarrenechea A, Perez-Martinez BB, Arandes JM. 2022. Oil production by pyrolysis of real plastic waste. Polymers. 14(3):553. doi:10.3390/polym14030553.
  12. Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian F, Lee WJ, Wu H, Li CZ. 2008. Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Industrial & Engineering Chemistry Research. 47(6):1846–1854. doi:10.1021/ie071497p.
  13. Hartman J. 2015. Kinematic and dynamic viscosity of diesel, biodiesel, and JP-900 compared to other non-standard fluids with a demonstration of viscosity changes at varying temperatures. [Undergraduate report]: Pennsylvania State University, Philadelphia.
  14. Hussain N. 2022. Properties of gasoline fuel.
  15. Karmaker AK, Rahman MM, Hossain MA, Ahmed MR. 2020. Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. Journal of Cleaner Production. 244:118645. doi:10.1016/j. jclepro.2019.118645.
  16. Kumar M, Tung Chong C, Karmakar S. 2022. Comparative assessment of combustion characteristics of limonene, Jet A-1 and blends in a swirl-stabilized combustor under the influence of pre-heated swirling air. Fuel. 316:123350. doi:10.1016/j.fuel.2022.123350.
  17. Maqsood T, Dai J, Zhang Y, Guang M, Li B. 2021. Pyrolysis of plastic species: A review of resources and products. Journal of Analytical and Applied Pyrolysis. 159:105295. doi: 10.1016/j.jaap.2021.105295.
  18. Martyr AJ, Rogers DR. 2021. Engine exhaust emissions. doi: 10.1016/b978-0-12-821226-4.00017-6.
  19. Mishra RK, Mohanty K. 2022. Pyrolysis of low-value waste sawdust over low-cost catalysts: physicochemical characterization of pyrolytic oil and value-added biochar. Biofuel Research Journal. 9(4):1736–1749. doi:10.18331/brj20 22.9.4.4.
  20. Olalo JA. 2021. Pyrolytic oil yield from waste plastic in quezon city, philippines: optimization using response surface methodology. International Journal of Renewable Energy Development. 11(1):325–332. doi:10.14710/ijred.2022.41457.
  21. Pakdel H, Pantea DM, Roy C. 2001. Production of dl-limonene by vacuum pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis. 57(1):91–107. doi:10.1016/s0165-2 370(00)00136-4.
  22. Papari S, Bamdad H, Berruti F. 2021. Pyrolytic conversion of plasticwastetovalue-addedproductsandfuels: A review. Materials (Basel, Switzerland). 14(10):2586. doi:10.3390/ ma14102586.
  23. Petrochemical Chemical & Energy. 2019. An introduction to olefins. https://www.petro-online.com/news/fuel-for-thought/13/breaking-news/an-introduction-to-olefins/48730.
  24. Ra Y, Reitz RD, McFarlane J, Daw CS. 2008. Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels. SAE International Journal of Fuels and Lubricants. 1(1):703–718. doi:10.4271/2008-01-1379.
  25. Rivera JdD, Davies GM, Jahn W. 2012. Flammability and the heat of combustion of natural fuels: A review. Combustion Science and Technology. 184(2):224–242. doi:10.108 0/00102202.2011.630332.
  26. Sharma A, Khatri D, Goyal R, Agrawal A, Mishra V, Hansdah D. 2021. Environmentally friendly fuel obtained from pyrolysis of waste tyres. doi:10.1007/978-981-16-1256-5_11.
  27. Shen XR, Geng CX, Lv BQ, Xu W, Xu Y, Zhao HZ. 2021. Tire pyrolysis wastewater treatment by a combined process of coagulation detoxification and biodegradation. Environmental science and ecotechnology. 8:100129. doi:10.1016/ j.ese.2021.100129.
  28. Subekti S, Sasmito A, Rahman B. 2023. Pemanfaatan sampah di tempat pemrosesan akhir (tpa) jatibarang sebagai sumber energi baru terbarukan. Merdeka Indonesia Internasional (MIJI). 3:54–63. https://merdekaindonesia.com/index.php/MerdekaIndonesiaJournalInternatiurn:nbn:de:00001MIJI.v3i1.69.
  29. Thahir R, Irwan M, Alwathan A, Ramli R. 2021. Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Results in Engineering. 11:100231. doi:10.1016/j.rine ng.2021.100231.
  30. The Engineering ToolBox. 2003. Liquids – kinematic viscosities. https://www.engineeringtoolbox.com/absolute-viscosity-liquids-d_1259.html.
  31. The Engineering ToolBox. 2008. Liquids – dynamic viscosities. https://www.engineeringtoolbox.com/kinematic-viscosity-d_397.htm.
  32. The Engineering ToolBox. 2023. Gasoline density, specific heat, viscosity and thermal conductivity vs. Temperature. https://www.engineeringtoolbox.com/gasoline-density-specific-heat-dynamic-kinematic-viscosity-thermal-conductivity-vs-temperature-d_2224.html.
  33. Troyer D. 2002. Kinematic viscosity explained. https://www.machinerylubrication.com/Read/294/absolute-kinematic-viscosity.
  34. Umeki ER, de Oliveira CF, Torres RB, dos Santos RG. 2016. Physico-chemistry properties of fuel blends composed of diesel and tire pyrolysis oil. Fuel. 185:236–242. doi: 10.1016/j.fuel.2016.07.092.
  35. Vempatapu BP, Tripathi D, Kumar J, Kanaujia PK. 2019. Determination of kerosene as an adulterant in diesel through chromatography and high-resolution mass spectrometry. SN Applied Sciences. 1(6). doi:10.1007/s42452-019-0 637-7.
  36. Wa̧ drzyk M, Janus R, Rza̧ dzik B, Lewandowski M, Budzyń S. 2020. Pyrolysis oil from scrap tires as a source of fuel components: Manufacturing, fractionation, and characterization. Energy & Fuels. 34(5):5917–5928. doi:10.1021/acs.energyfuels.0c00265.
  37. Wang G, Dai Y, Yang H, Xiong Q, Wang K, Zhou J, Li Y, Wang S. 2020. A review of recent advances in biomass pyrolysis. Energy & Fuels. 34(12):15557–15578. doi:10.1021/acs.ener gyfuels.0c03107.