Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 2 (2024): Volume 18, Number 2, 2024

Enzymatic saccharification of liquid sugar from cassava peel starch: Optimization and characteristics

DOI
https://doi.org/10.22146/jrekpros.13727
Submitted
June 1, 2024
Published
September 30, 2024

Abstract

The province of Lampung generated 2.6 million tons of cassava and 0.28 million tons of inner cassava peel waste in 2020. This demonstrates that the value of production is closely correlated with the amount of trash generated. 44-59% starch is still present in the waste from the inside of cassava peels, and this starch can be used as an input to make liquid sugar. Using the Response Surface Methodology (RSM) tool, this study attempts to optimize the saccharification process with modifications in duration (2, 4, and 8 h) and temperature (55, 60, and 65°C). Liquification and saccharification are the enzymatic processes used to make liquid sugar from cassava peel. According to study findings, the starch yield from cassava peels was 11.54%, with corresponding levels of water, ash, starch, and crude fiber of 13.53, 0.61, and 88.32%, and 1.025%, respectively. The yield of liquid sugar obtained from saccharification of cassava peel starch is 58.36%. The water and ash contents are 58.07, 16.95, and 0.11%, respectively, with the quality of lowering sugar content. Using the RSM approach, this study was able to optimize the saccharification process of liquid sugar from cassava peel starch at a temperature of 67.07 °C and a time variation of 6.8 hours. The optimized conditions resulted in a higher yield of liquid sugar from cassava peel starch. This study highlights the potential of utilizing cassava peels as a valuable source for liquid sugar production.

References

  1. Abolore RS, Jaiswal S, Jaiswal AK. 2024. Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications. 7:100396. doi:10.1016/ j.carpta.2023.100396.
  2. Agustina T, Elsyana V, Alvita LR, Ramandani AA. 2024. Characteristics of liquid sugar from cassava flour using gelatinization , liquefaction and enzymatic saccharification ( amyloglucosidase and α -amylase ) processes. 7(1):37–49. https://journal.waliso ngo.ac.id/index.php/wjc/article/view/20458.
  3. Alfian A, Wahyuningtyas D, Sukmawati P. 2022. Pembuatan edible filmdari pati kulit singkong menggunakan plasticizer sorbitol dengan asam sitrat sebagai crosslinking agent. Jurnal Inovasi Proses. 5(September 2020):47. https://ejournal.akprind.ac.id/i ndex.php/JIP/article/download/3019/2243/4719.
  4. Bourquard BA. 2018. Raw material variability in food manufacturing:1–117. https://docs.lib.purdue.edu/open _access_dissertations/1694.
  5. Chukwujekwu OJ. 2023. Nutritional composition and antinutritional factors analysis of kpokpogari and starch: a comparative study using commercial wheat. Archives of Advanced Engineering Science. doi:10.47852/bonviewaaes32021167.
  6. Dura A, Błaszczak W, Rosell CM. 2014. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers. 101:837–845. doi:10.1016/j.carbpol. 2013.10.013.
  7. Dwi Murtias K, Heri Mulyati A, Budiyanto A. 2015. Optimasi produksi gula cair dari pati sagu (metroxylon spp.) Asal sulawesi tenggara. Jurnal Teknik Kimia. 4(01):30–41. https://www.unpak.ac.id/.
  8. Gnanasekaran L, Priya AK, Thanigaivel S, Hoang TKA, SotoMoscoso M. 2023. The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel. 331:125668. doi:10.1016/j.fuel.2022.125668.
  9. Godefroidt T, Riley IM, Ooms N, Bosmans GM, Brijs K, Delcour JA. 2023. Sucrose substitution in cake systems is not a piece of cake. npj Science of Food. 7(1). doi:10.1038/s41538-023-00225 -y.
  10. Handayani AS, Nizardo NM, Nabila J, Syabila AN. 2023. Influence of enzymes combination (α-amylase and and β-amylase) for maltodextrin production from cassava solid waste (onggok). doi:10.20944/preprints202312.2045.v1.
  11. Herlambang MJ, Ramandani AA, Cendekia D, Alvita LR, Wulandari YR, Shintawati S, Purnani MS, Efendi DAMN. 2023. Optimization and characterization of adsorbent from palm kernel shell waste using H3PO4 activator. CHEESA: Chemical Engineering Research Articles. 6(2):118. doi:10.25273/cheesa.v6i2.15906.118 -125.
  12. Hua X, Yang R. 2015. Enzymes in starch processing. p. 139–169. doi: 10.1201/b19408-9.
  13. Jenol MA, Ahmad MN, Adeni DSA, Vincent M, Suhaili N. 2023. Sago wastes as a feedstock for biosugar, precursor for chemical substitutes. doi:10.1002/9783527841141.ch10.
  14. Li S, Wang Z, Feng D, Pan Y, Li E, Wang J, Li C. 2024. The important roleofstarchfinemolecularstructuresinstarchgelatinization property with addition of sugars/sugar alcohols. Carbohydrate Polymers. 330:121785. doi:10.1016/j.carbpol.2024.121785.
  15. Mariana W, Widjanarko SB, Widyastuti E. 2018. Optimasi formulasi dan karakterisasi fisikokimia dalam pembuatan daging restrukturisasi menggunakan response surface methodology (konsentrasi jamur tiram serta gel porang dan karagenan). Jurnal Pangan dan Agroindustri. 5(4). https://jpa.ub.ac.id/index .php/jpa/article/view/567.
  16. Martiyana NR. 2022. Pemanfaatan limbah kulit singkong (manihot utilissima) sebagai gula cair secara metode hidrolisis enzimatis. [Skripsi]: UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG.
  17. Megavitry R, Laga A, Syarifuddin A, Widodo S. 2019. Pengaruh suhu gelatinisasi dan waktu sakarifikasi terhadap produk sirup glukosa sagu. Sinergitas Multidisiplin Ilmu Pengetahuan dan Teknologi. 2(1):125–128. https://jurnal.yapri.ac.id/index.php/s emnassmipt/article/view/92/83.
  18. Mukarramah, Ansharullah, Rianda L. 2016. Pengaruh penambahan enzim alfa amilase pada suhu yang berbeda terhadap karakteristik sirup glukosa. J. Sains dan Teknologi Pangan. 1(3):246– 254. https://ojs.uho.ac.id/index.php/jstp/article/view/1556.
  19. Obadi M, Qi Y, Xu B. 2023. High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydrate Polymers. 299:120185. doi:10.1016/j.carbpol.2022.120 185.
  20. Pawignya H, Kusworo TD, Pramudono B. 2019. Optimization for production tert-butyl glycoside nonionic surfactant using response surface methodology. Journal of Physics: Conference Series. 1295(1):12003. doi:10.1088/1742-6596/1295/1/012003.
  21. Ramandani AA, Shintawati S, Aji SP. 2024. Producing liquid organic fertilizer (LOF) by combining rice straw waste with local microorganisms (MOL) to enhance the growth of rice plants. Jurnal Teknik Kimia. 30(1):91–102. doi:10.36706/jtk.v30i1.1613.
  22. Suripto S, Maarif MS, Arkeman Y. 2013. Pengembangan gula cair berbahan baku ubi kayu sebagai alternatif gula kristal dengan pendekatan sistem inovasi. JURNAL TEKNIK INDUSTRI. 3(2). doi:10.25105/jti.v3i2.1575.
  23. Sutamihardja RTM, Azizah M, Mafiana BD. 2019. Perbandingan hidrolisis enzimatis dan asam terhadap pati jagung manis (zea mays l.) Dalam pembuatan gula cair. JURNAL SAINS NATURAL. 7(2):58. doi:10.31938/jsn.v7i2.255.
  24. Sutamihardja RTM, Srikandi S, Herdiani DP. 2017. Hidrolisis asam klorida tepung pati singkong (manihot esculenta crantz) dalam pembuatan gula cair. Jurnal Sains Natural. 5(1):83. doi:10.31938/jsn.v5i1.103.
  25. Sutanto E, Sahan Y, Octavia D. 2014. Konversi tepung sagu menjadi sirup glukosa dengan menggunakan katalis asam klorida. Sagu. 13(1):22–28. https://download.garuda.kemdikbud.go.id/ article.php?article=2632118&val=24498&title=KONVERSITE
  26. PUNGSAGUMENJADISIRUPGLUKOSADENGANMENGGUN AKANKATALISASAMKLORIDAv.
  27. SyahrirI,MSyahrirS.2017. Pemanfaatanlimbahpadathasilhidrolisis dari kulit singkong menjadi biobriket. Prosiding SENIATI. 3(2):9–10. https://ejournal.itn.ac.id/index.php/seniati/article/d ownload/1942/1702/.
  28. Teguh TE, Zakaria WA, Indah LSM, Seta AP. 2022. Strategies and policies to increase competitiveness of cassava in lampung province, indonesia. Jurnal Manajemen dan Agribisnis. doi: 10.17358/jma.19.3.492.
  29. Trithavisup K. ???? Production and properties of resistant maltodextrin from cassava starch. [[Doctoral thesis]]: Office of Academic Resources, Chulalongkorn University. doi:10.58837 /chula.the.2020.221.
  30. van Boekel M. 2022. Kinetics of heat-induced changes in dairy products: Developments in data analysis and modelling techniques. International Dairy Journal. 126:105187. doi:10.1016/j.id airyj.2021.105187.
  31. Vasconcelos JCS, Cordeiro GM, Ortega EMM, de Rezende ÉM. 2020. A new regression model for bimodal data and applications in agriculture. Journal of Applied Statistics. 48(2):349–372. doi: 10.1080/02664763.2020.1723503.
  32. Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. 2022. High-amylose starch: Structure, functionality and applications. Critical Reviews in Food Science and Nutrition. 63(27):8568–8590. doi:10.1080/104083 98.2022.2056871.