Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 2 (2024): Volume 18, Number 2, 2024

Simulation and evaluation of fuel distribution line from fuel terminal Tuban into integrated terminal Perak at PT Pertamina MOR V through ASPEN Plus® modeling

  • Yosef Budiman
  • Dwita Cahaya Pratiwi
  • Umi Rofiqah
  • Ifa Puspasari
  • Yudha Whastu Wibowo
  • Moh. Khotip
  • Hendrix Eko Vebriono
  • Arif Hidayat+
DOI
https://doi.org/10.22146/jrekpros.14106
Submitted
June 19, 2024
Published
September 30, 2024

Abstract

This research aims to 1) to determine operating conditions that correspond to the amount of fuel needed to be distributed, 2) visualize the profile of pressure changes with pipe distance, and 3) compare actual conditions with simulated conditions. The research method consists of simulation of energy loss in the form of pressure drop for each type of fuel oil (gasoline and gasoil) using ASPEN Plus® software. Research results show that a greater pump pressure of 87 bar is required to distribute gasoil, compared to gasoline which only uses 82 bar to reach ideal atmospheric pressure at 750 m3/hour. Reduction in fuel pumping pressure is close to linearity, where pumping pressure will continue to decrease as piping distribution distance increases. % error is obtained by comparing the simulation results with the industrial standard which is evidenced by % error of 7.69 (moderate) in the type of gasoline fuel and % error value of 1.81 (strong) in the type of gasoil fuel. This research has been in accordance with the real conditions in the field, so it can predict the right conditions to maximize the process.

References

  1. A Wells S. 2021. Modeling thermal stratification effects in lakes and reservoirs. IntechOpen. doi:10.5772/intech open.91754.
  2. Amer MO, Hoseyni SM, Cordiner J. 2024. Fuelling the future with safe hydrogen transportation through natural gas pipelines: a quantitative risk assessment approach. Transactions of the Indian National Academy of Engineering. doi:10.1007/s41403-024-00482-7. http: //dx.doi.org/10.1007/s41403-024-00482-7.
  3. Aspen Technology I. 2000. Aspen plus user guide. Technical report.Design, Simulation,and OptimizationSystems, AspenTechnology, Inc.. Cambridge.
  4. Cameron K, Lewis A, Montalvão D, Herfatmanesh MR. 2023. In-service performance of emergency shutdown valves and dependent operational relationships in the offshore oil and gas industry. Petroleum. 9(4):613–620. doi:10.101 6/j.petlm.2023.06.004. http://dx.doi.org/10.1016/j.petlm .2023.06.004.
  5. Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB. 2022. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. Bioresource Technology. 351:127045. doi:10.1016/j. biortech.2022.127045. http://dx.doi.org/10.1016/j.biortec h.2022.127045.
  6. Coker AK. 1995. Acknowledgments. Elsevier. p. viii. doi:10.101 6/B978-088415280-4/50000-5.
  7. Demissie A, Zhu W, Belachew CT. 2017. A multi-objective optimization model for gas pipeline operations. Computers & Chemical Engineering. 100:94–103. doi:10.1016/j.comp chemeng.2017.02.017. http://dx.doi.org/10.1016/j.compc hemeng.2017.02.017.
  8. Herman GC, Ramdlan M, Si KM, Herman ID. 2020. Analisis heat losses dan pressure drops pada sistem pemipaan panas bumi terhadap daya masukan turbin dengan simulasi software aspen hysys di pt geo dipa energi (persero) unit patuha. 7(1):1106–1114. https://openlibrary.telkom university.ac.id/pustaka/files/157102/jurnal_eproc/ana lisis-heat-losses-dan-pressure-drops-pada-sistem-p emipaan-panas-bumi-terhadap-daya-masukan-turbi n-dengan-simulasi-software-aspen-hysys-di-pt-geo -dipa-energi-persero-unit-patuha.pdf.
  9. Huth M, Heilos A. 2013. Fuel flexibility in gas turbine systems: impact on burner design and performance. Elsevier. p. 635–684. doi:10.1533/9780857096067.3.635.
  10. Jakkula J, Aalto P, Niemi V, Kiiski U, Nikkonen J, Mikkonen S, Piirainen O. 2012. Fuel composition for a diesel engine. https://patents.google.com/patent/US20090126261A1/ en.
  11. Khan U, Pao W, Sallih N. 2022. A review: Factors affecting internal two-phase flow-induced vibrations. Applied Sciences. 12(17):8406. doi:10.3390/app12178406. http: //dx.doi.org/10.3390/app12178406.
  12. Khoo BC, Giacomin AJ, Hatzikiriakos SG, Feigl KA, PhanThien N. 2023. Special issue on Flow Cavitation. Physics of Fluids. 35(11). doi:10.1063/5.0183557. http://dx.doi.org /10.1063/5.0183557.
  13. Kim JC, Yoo E, Sung HG. 2024. Influence of liquid-fuel swirl injection pressure on the flow dynamics characteristics in a lean direct injection gas turbine combustor using Eulerian-Lagrangian large eddy simulations. Journal of Mechanical Science and Technology. 38(2):691–701. doi:
  14. 1007/s12206-024-0119-8. http://dx.doi.org/10.1007/s 12206-024-0119-8.
  15. Koor M, Vassiljev A, Koppel T. 2016. Optimization of pump efficiencies with different pumps characteristics working in parallel mode. Advances in Engineering Software. 101:69–76. doi:10.1016/j.advengsoft.2015.10.010. http: //dx.doi.org/10.1016/j.advengsoft.2015.10.010.
  16. Luo X, Wang M, Oko E, Okezue C. 2014. Simulation-based techno-economic evaluation for optimal design of CO 2 transport pipeline network. Applied Energy. 132:610–620. doi:10.1016/j.apenergy.2014.07.063. http://dx.doi.org/10. 1016/j.apenergy.2014.07.063.
  17. Mohamed Bey M, Alshbuki EH, Mohamed AA. 2021. Natural gas pipeline network modeling using pipsys program. 4480(8):115–123. doi:10.36349/easjecs.2021.v04i08.002.
  18. Paraschiv LS, Paraschiv S. 2023. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Reports. 9:535– 544. doi:10.1016/j.egyr.2023.07.024. http://dx.doi.org/10. 1016/j.egyr.2023.07.024.
  19. Qian Y, Qiu Y, Zhang Y, Lu X. 2017. Effects of different aromatics blended with diesel on combustion and emission characteristics with a common rail diesel engine. Applied Thermal Engineering. 125:1530–1538. doi:10.1016/ j.applthermaleng.2017.07.145. http://dx.doi.org/10.1016/j .applthermaleng.2017.07.145.
  20. Sa’adah AF, Fauzi A, Juanda B. 2017. Peramalan penyediaan dan konsumsi bahan bakar minyak Indonesia dengan model sistem dinamik. Jurnal Ekonomi dan Pembangunan Indonesia. 17(2):118–137. doi:10.21002/jepi.v17i2.661. http://dx.doi.org/10.21002/jepi.v17i2.661.
  21. Sanni SE, Uma P, Oni BA, Okoro EE. 2024. Substituting bioenergy for fossil fuels and risks to energy security. Elsevier. p. 465–474. doi:10.1016/b978-0-323-93940-9.00122-5.
  22. Schäfle C, Kautz C. 2021. Student reasoning in hydrodynamics: Bernoulli’s principle versus the continuity equation. Physical Review Physics Education Research. 17(1). doi:
  23. 1103/physrevphyseducres.17.010147. http://dx.doi .org/10.1103/physrevphyseducres.17.010147.
  24. Surojo E, Muhayat N, Budiana EP, Aridharma AP, Saputro YCNN, Tuswan T, Putri EDWS, Prabowo AR, Triyono T. 2022. The influence of water flow characteristics on the physical and mechanical qualities of underwater wet welded a36 marine steel plate. Metals. 12(8):1295. doi:
  25. 3390/met12081295. http://dx.doi.org/10.3390/met 12081295.
  26. Szablowski L, Morosuk T. 2022. Advanced exergy analysis of adiabatic underwater compressed air energy storage system. Entropy. 25(1):77. doi:10.3390/e25010077. http: //dx.doi.org/10.3390/e25010077.
  27. Wang Yt, Xu J, Liu Xf, Chen Mh, Wang St. 2015. Study of determination of oil mixture components content based on quasi-monte carlo method. Guang pu xue yu guang pu fen xi = Guang pu. 35:1312–1315. doi:10.3964/j.issn.100 0-0593(2015)05-1312-04.
  28. Xu J, Zhao J, Liu W. 2023. A comparative study of renewable and fossil fuels energy impacts on green development in Asian countries with divergent income inequality. Resources Policy. 85:104035. doi:10.1016/j.resourpol.2023.1 04035. http://dx.doi.org/10.1016/j.resourpol.2023.1040 35.
  29. Yaws CL, editor. 1999. Chemical properties handbook. 1st editio edition. New York: McGraw-Hill Education. https:
  30. //www.accessengineeringlibrary.com/content/book/ 9780070734012.