Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 18 No 2 (2024): Volume 18, Number 2, 2024

Increasing The Strength of Cellular Lightweight Concrete Bricks with The Addition of Bamboo Fiber

DOI
https://doi.org/10.22146/jrekpros.15320
Submitted
August 1, 2024
Published
September 30, 2024

Abstract

This research aims to obtain technology for improving the quality of CLC (Celullar Lightweight Concrete) bricks to be equivalent to AAC (Autoclaved Aerated Concrete). This is a response to the rapid development, especially in the property sector, which is followed by the increasing need for bricks as the main material for building walls. CLC bricks are an alternative product other than red bricks that have the potential to pollute the environment because in the production process there is burning. The problem is that the quality of CLC bricks is relatively lower compared to AAC bricks. The method is to add bamboo fiber as a reinforcement and optimize the elements. The design of the experiment was made using the Taguchi Method, but preliminary experiments had previously been carried out to predict the percentage of elements. The research includes manufacturing process technology and quality testing on samples. Bamboo fiber-reinforced CLC bricks are obtained with an optimal composition of 0.5% fiber and a ratio of cement mass to sand mass of 1:1.6. This sample has a compressive strength of 1.1235 MPa and a bending strength of 1.1723 MPa. From this composition, samples were obtained with an average compressive strength of 1.1285 MPa and an average bending strength of 1.3551 MPa. Thus, it can be concluded that the addition of fiber can increase the strength of CLC bricks to be equal to or stronger than AAC bricks on the market.

References

  1. ASTM D790. (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.
  2. Belouafa, S., Habti, F., Benhar, S., Belafkih, B., Tayane, S., Hamdouch, S., Bennamara, A., & Abdelmjid, A. (2017). Statistical tools and approaches to validate analytical methods: methodology and practical examples. International Journal of Metrology and Quality Engineering, 8, 9. https://doi.org/10.1051/ijmqe/2016030
  3. Dawood, E., & A. Abbas, W. (2016). Proportioning of Foamed Concrete Reinforced with Carbon Fibers. Engineering & Technology Journal, ( 2412-0758), Vol.34, Part(A). https://doi.org/10.30684/etj.34.15A.8
  4. Ecotrend Materials. (2022). Eco-friendly Construction Materials.
  5. Goritman, B., Irwangsa, R., & Kusuma, J. H. (2012). Studi Kasus Perbandingan Berbagai Bata Ringan Dari Segi Material, Biaya, Dan Produktivitas. Jurnal Dimensi Pratama Teknik Sipil, 1(1).
  6. Harsojuwono, B., Arnata, I., Puspawati, D., & Pratiwi, I. (2021). Rancangan Percobaan : Teori dan Aplikasinya.
  7. Himasree, P. R., Korde, C., West, R. P., & Ganesan, N. (2023). State of the art review of bamboo-reinforced concrete structural elements. Magazine of Concrete Research, 76(2), 55–68. https://doi.org/https://doi.org/10.1680/jmacr.23.00050
  8. Kavitha, S. (2016). Effectiveness of bamboo fiber as an strength enhancer in concrete. International Journal of Earth Science and Engineering, 9, 192–196.
  9. Li, Z., Xiao, D., & Wang, R. (2023). Strength properties of unidirectional laminated engineered bamboo boards under off-axis tension and compression tests. Composite Structures, 322, 117405. https://doi.org/https://doi.org/10.1016/j.compstruct.2023.117405
  10. Nensok, M., Mydin, M., & Awang, H. (2021). Optimization of mechanical properties of cellular lightweight concrete with alkali treated banana fiber. Revista de La Construcción, 20, 491–511. https://doi.org/10.7764/RDLC.20.3.491
  11. Peni Widiarti. (2022, January 18). Bata Ringan Blesscon Proyeksikan Penjualan Tumbuh 40 Persen . Bisnis.Com. https://surabaya.bisnis.com/read/20220118/532/1490487/bata-ringan-blesscon-proyeksikan-penjualan-tumbuh-40-persen
  12. PT Superior Prima Sukses. (2024). Produsen Bata Ringan Unggulan. https://ajaib.co.id/bedah-saham-bles/
  13. Santoso, T., & Miftah, M. F. (2023). PENGARUH PENAMBAHAN FOAM AGENT TERHADAP DENSITY, DAYA SERAP AIR DAN KUAT TEKAN MORTAR. Jurnal Riset Teknik Sipil Dan Sains, 2, 32–39. https://doi.org/10.57203/jriteks.v2i1.2023.32-39
  14. Sonar, K., & Sathe, S. (2024). Exploring fiber reinforcements in concrete and its challenges: a comprehensive review. Multiscale and Multidisciplinary Modeling, Experiments and Design, 1–33. https://doi.org/10.1007/s41939-024-00404-8
  15. Times Indonesia. (2023, December 1). Indonesia Construction Market Outlook 2024 Diperkirakan Proyek Konstruksi Tahun 2024 Akan Tumbuh 4%. https://timesindonesia.co.id/ekonomi/478506/indonesia-construction-market-outlook-2024-diperkirakan-proyek-konstruksi-tahun-2024-akan-tumbuh-4
  16. Widyawati, F. (2020). Pemanfaatan Serat Sisal (Agave Sisalana L.) dan Limbah Plastik Pet untuk Pembuatan Bata Ringan Clc (Cellular Lightweight Concrete). Jurnal Tambora, 4(1), 21–25. https://doi.org/10.36761/jt.v4i1.566
  17. Yusra, A., Opirina, L., & Satria, A. (2020). Pengaruh Penambahan Serat Polypropylene pada Kuat Tekan Beton Mutu Tinggi. 6, 1–9. https://doi.org/10.35308/jts-utu.v6i1.1750
  18. Zulapriansyah, R., Suryanita, R., & Maizir, H. (2020). Komposisi Optimal Campuran Bata Ringan Silica Fume Berdasarkan Kuat Tekan. Sainstek (e-Journal), 8, 49–55. https://doi.org/10.35583/js.v8i2.119