Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 0 No 0.1 (3000): ONLINE FIRST

Techno-economic analysis of process for separating saturated and unsaturated fractions from palm fatty acid distillate

DOI
https://doi.org/10.22146/jrekpros.16251
Submitted
September 5, 2024
Published
December 7, 2024

Abstract

Palm fatty acid distillate (PFAD) can be used as a raw material for two types of polyvinyl chloride (PVC) thermal stabilizers: organotin and mixed organometal. To produce high-quality thermal stabilizers, PFAD must first be separated into saturated and unsaturated fractions. This research aims to develop and analyze the techno-economics of separating these fractions from PFAD through solvent crystallization using methanol. The study began with the development of a process flow diagram, including the selection of unit operations and equipment. Mass and energy balances for the developed process were then calculated. Investment and production costs were estimated and used to determine economic indicators. These calculations were performed using Aspen Plus and Aspen Hysys software. Utility requirements were primarily driven by solvent evaporation and condensation. From an environmental perspective, higher crystallization temperatures are preferable due to reduced fuel consumption and lower CO2 emissions. However, higher crystallization temperatures resulted in a less pure unsaturated fraction, despite producing a larger quantity. The estimated investment for constructing a separation plant with the studied capacity and crystallization temperature range was between 13.6 and 13.9 million USD. Among the equipment, fired heaters and refrigeration compressors contribute the most to costs. The separation process at temperatures of -15°C and 0°C was found to be economically viable, with internal rates of return (IRR) of 36% and 49%, respectively. In contrast, the separation process at 10°C was not economically feasible. The findings of this study are expected to serve as a reference for the development of commercial-scale processes.

References

  1. Amelia O, Sailah I, Kartika IA, Suparno O, Bindar Y. 2021. Ecofriendly alkyd resins based on vegetable oil: Review. Jurnal Rekayasa Proses. 15(1):1. doi:10.22146/jrekpros.64143.
  2. Anneken DJ, Both S, Christoph R, Fieg G, Steinberner U, Westfechtel A. 2006. Fatty Acids. In: Ullmann’s encyclopedia of industrial chemistry. Wiley. doi:10.1002/14356007.a10 _245.pub2.
  3. Berg JM, Stryer L, Tymoczko JL, Gatto GJ. 2015. Biochemistry. Macmillan Learning.
  4. Black SN. 2019. Crystallization in the pharmaceutical industry. Cambridge University Press. p. 380–413. doi:10.1017/ 9781139026949.013.
  5. Buchori L, Widayat W, Hadiyanto H, Satriadi H, Chasanah N, Kurniawan MR. 2022. Modification of magnetic nanoparticle lipase catalyst with impregnation of Activated Carbon Oxide (ACO) in biodiesel production from PFAD (Palm Fatty Acid Distillate). Bioresource Technology Reports. 19:101137. doi:10.1016/j.biteb.2022.101137.
  6. Cho HJ, Kim SH, Hong SW, Yeo YK. 2012. A single step noncatalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production. Fuel. 93:373–380. doi:10.1016/j. fuel.2011.08.063.
  7. Couper JR, Penney WR, Fair JR, Walas SM. 2005. Chemical Process Equipment: Selection and Design. Gulf Professional Publishing.
  8. da Silva TLT, Martini S. 2024. Recent advances in lipid crystallization in the food industry. Annual Review of Food Science and Technology. 15(1):355–379. doi:10.1146/annu rev-food-072023-034403.
  9. Douvartzides SL, Charisiou ND, Papageridis KN, Goula MA. 2019. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies. 12(5):809. doi:10.3390/en12050809.
  10. Haraldsson G. 1984. Separation of saturated/unsaturated fatty acids. Journal of the American Oil Chemists’ Society. 61(2):219–222. doi:10.1007/bf02678772.
  11. Huong LM. 2007. Polyunsaturated fatty acid enrichment by complexation with silver ion. Journal of Chemistry. 45(6):757–762. https://vjs.ac.vn/index.php/vjchem/article/view/4826.
  12. Japir AAW, Salimon J, Derawi D, Yahaya BH, Bahadi M, AlShujaʼa S, Yusop MR. 2018a. A highly efficient separation and physicochemical characteristics of saturated fatty acids from crude palm oil fatty acids mixture using methanol crystallisation method. OCL. 25(2):A203. doi:10.1 051/ocl/2018003.
  13. Japir AAW, Salimon J, Derawi D, Yahaya BH, Jamil MSM, Yusop MR. 2018b. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology. Grasas y Aceites. 68(4):224. doi:10.3989/gya.0552171.
  14. Maeda K, Naito Y, Kuramochi H, Arafune K, Itoh K, Taguchi S, Yamamoto T. 2021. High-Pressure crystallization of binary unsaturated fatty acids in cylindrical cell. Journal of Crystal Growth. 576:126380. doi:10.1016/j.jcrysgro.2021.12 6380.
  15. Maeda K, Nomura Y, Fukui K, Hirota S. 1997. Separation of fatty acids by crystallization using two liquid phases. Korean Journal of Chemical Engineering. 14(3):175–178. doi:10.1007/bf02706091.
  16. Maeda K, Nomura Y, Guzman LA, Hirota S. 1998. Crystallization of fatty acids using binodal regions of two liquid phases. Chemical Engineering Science. 53(5):1103–1105. doi:10.1016/s0009-2509(97)00402-8.
  17. Maeda K, Nomura Y, Tai K, Ueno Y, Fukui K, Hirota S. 1999. New crystallization of fatty acids from aqueous ethanol solution combined with liquid−liquid extraction. Industrial & Engineering Chemistry Research. 38(6):2428– 2433. doi:10.1021/ie980715z.
  18. Magne FC, Mod RR, Skau EL. 1957. Purification of long‐chain saturated fatty acids by recrystallization of their molecular compounds with acetamide. Journal of the American Oil Chemists’ Society. 34(3):127–129. doi:10.1007/bf0264 0452.
  19. Martsinchyk K, Martsinchyk A, Łazor M, Shuhayeu P, Kupecki J, Niemczyk A, Błesznowski M, Milewski J. 2023. Feasibility study and techno-economic assessment of powerto-gas (P2G) technology based on solid oxide electrolysis (SOE). doi:10.2139/ssrn.4662720.
  20. Masduki, Sutijan, Budiman A. 2013. Kinetika reaksi esterifikasi palm fatty acid distilate (PFAD) menjadi biodiesel dengan katalis zeolit-zirkonia tersulfatasi. Jurnal Rekayasa Proses. 7(2):59. https://jurnal.ugm.ac.id/v3/jrekpros/article/view/10658.
  21. McCabe WL, Smith JC. 1976. Unit operations of chemical engineering. 3rd editio edition. New York: McGraw‐Hill. doi:10.1002/aic.690230337.
  22. Nasori AS, Wiguna B, Mufti A, Laksono H, Budiyanto B, Kusumasmarawati AD, Permana AW, Untoro M. 2023. Pemanfaatanpalmfattyaciddistillatesebagaisumberasamoleat: diversifikasi produk samping minyak kelapa sawit sebagai produk antara untuk industri hilir. Jurnal Teknologi Industri Pertanian:181–187. doi:10.24961/j.tek.ind.pert. 2023.33.2.181.
  23. Nur Azreena I, Asikin-Mijan N, Lau HLN, Hassan MA, Izham SM, Kennedy E, Stockenhuber M, Yan P, Taufiq-Yap YH. 2024. Hydro-processing of palm fatty acid distillate for diesel-like hydrocarbon fuel production using La-zeolite beta catalyst. Industrial Crops and Products. 218:118907. doi:10.1016/j.indcrop.2024.118907.
  24. Peters MS, Timmerhaus KD. 1991. Plant Design and Economics for Chemical Engineers. Chemical and petroleum engineering series. McGraw-Hill. doi:http://dx.doi.org/10.1080/00137918108956027.
  25. Puah CW, Choo YM, Ma AN, Chuah CH. 2007. The effect of physical refining on palm vitamin e (tocopherol, tocotrienol and tocomonoenol). American Journal of Applied Sciences. 4(6):374–377. doi:10.3844/ajassp.2007.374.377.
  26. Putrawan IDGA, Azharuddin A. 2024. Valorization of palm oil refining by-product for organotin mercaptide as a polyvinyl chloride thermal stabilizer: Synthesis, efficacy and comparison to mixed metal stearate. Journal of Bioresources and Bioproducts. 9(4):565–576. doi:10.1016/j.jobab. 2024.06.001.
  27. Putrawan IDGA, Azharuddin A, Komariah H, Egashira R. 2024a. Techno-economic analysis of cleaner alternatives for recovering ammonium chloride from wastewater generated by polyvinyl chloride thermal stabilizer plants. Cleaner Engineering and Technology. 21:100787. doi:10.1016/j.clet.2024.100787.
  28. Putrawan IDGA, Indarto A, Octavia Y. 2022. Thermal stabilization of polyvinyl chloride by calcium and zinc carboxylates derived from byproduct of palm oil refining. Heliyon. 8(8):e10079. doi:10.1016/j.heliyon.2022.e10079.
  29. Putrawan IDGA, Nento NAP, Azharuddin A, Indarto A, Adityawarman D. 2024b. Synthesis and thermal stabilizing effect on polyvinyl chloride of calcium/zinc carboxylate from palm fatty acid distillate: Effect of metal to fatty acid ratio. The 7th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, and Medical Devices. volume 3080. AIP Publishing. p. 50008. doi:10.1063/5.01 93942.
  30. Rolland JR, Riel RR. 1966. Separation of milk fat fractions by centrifugation. Journal of Dairy Science. 49(6):608–611. doi:10.3168/jds.s0022-0302(66)87916-x.
  31. Sembiring KC, Afandi A. 2022. Separation of saturated and unsaturated fatty acids from hydrolyzed palm oil. 2ND INTERNATIONAL CONFERENCE ON ENERGETICS, CIVIL ANDAGRICULTURAL ENGINEERING 2021 (ICECAE2021). volume 2686. AIP Publishing. p. 50015. doi:10.1063/5.0114 056.
  32. Teramoto M, Matsuyama H, Ohnishi N, Uwagawa S, Nakai K. 1994. Extraction of ethyl and methyl esters of polyunsaturated fatty acids with aqueous silver nitrate solutions. Industrial & Engineering Chemistry Research. 33(2):341– 345. doi:10.1021/ie00026a026.
  33. Towler G, Sinnott R. 2007. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Butterworth-Heinemann. doi:http://dx.doi.org/10.1002/aic.11633.
  34. Wanasundara, U N; Peterson R, Grove C. 2011. Process for separating saturated and unsaturated fatty acid. https://patents.google.com/patent/US8003813B2/en#:$sim$:text=Whenseparatingfattyacids%2Cthe,frac tionenrichedwithsaturatedfree.
  35. Wright AJ, McGauley SE, Narine SS, Willis WM, Lencki RW, Marangoni AG. 2000. Solvent effects on the crystallization behavior of milk fat fractions. Journal of Agricultural and Food Chemistry. 48(4):1033–1040. doi:10.1021/jf9908 244.