Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 0 No 0.1 (3000): ONLINE FIRST

Co-firing briquette fuel from coal waste and palm kernel shells: Optimization and validation

DOI
https://doi.org/10.22146/jrekpros.16419
Submitted
September 13, 2024
Published
July 5, 2025

Abstract

The low-rank coal is increasing every year but still slightly exploited by the industry, due to it being caused by the low-calorie value of the low-rank coal waste. Therefore, the mixture of other biomass is expected to raise the calorie value. This approach could potentially make the low-rank coal more economically viable for use in various industries, especially as a source of energy. Additionally, further research and development in this area could lead to more efficient and sustainable energy production methods. The study uses the Central Composite Design with ratio of low-rank coal waste and palm kernel shells of 40%: 60%, 60%: 40%, and 80%: 20% and variations of the glue starch (5 to 7%), which have been optimized and validated using the Response Surface Method approach. The results of the study showed volatile matter, fixed carbon, and calorie values of 61.43% to 71.69%, 16.56% to 26.98%, and 5190.44 to 6330.40 kcal/g, respectively. The results also demonstrated that the glue with 6% variation showed the highest fixed carbon content and calorie value in comparison to the other variations. The optimum of concentration of low-rank coal and palm kernel shell for co-firing of 80: 20% with 5% glue addition resulting in a volatile matter, fixed carbon, calorie value, flame capacity, flammability, of 54.41%, 33.39%, 6192.123 kcal/g, 14.12 min, and 0.052 g/min, respectively.  The validation process also met the requirements for SNI 01-6235-2000 and SNI 8675-2018. Overall, the study concluded that the co-firing of low-rank coal waste and palm kernel shell with glue starch can result in an optimized fuel mixture with high performance characteristics. These findings are significant for industries looking to improve their energy efficiency and reduce emissions.

References

  1. Aguirre-Villegas HA, Benson CH. 2017. Case history of environmental impacts of an Indonesian coal supply chain. Journal of Cleaner Production. 157:47–56. doi:10.1016/j. jclepro.2017.03.232.
  2. Chang G, Huang Y, Xie J, Yang H, Liu H, Yin X, Wu C. 2016. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Conversion and Management. 124:587–597. doi:10.1 016/j.enconman.2016.07.038.
  3. Chavda R, Mahanwar P. 2018. Effect of inorganic and organic additives on coal combustion: a review. International Journal of Coal Preparation and Utilization. 41(10):749– 766. doi:10.1080/19392699.2018.1536046.
  4. Chirchir, D K , Nyaanga , D M, Githeko, J M. 2013. Effect of binder types and amount on physical and combustion characteristics. International Journal of Engineering Research and Science and Technology. 2(1):12–20.
  5. Elisa E, Shintawati S, Afifah DA, Ramandani AA. 2024. Characteristics candlenut shell-based activated Carbon for reduction Iron (Fe) in surface water from Bratasena Tulang Bawang, Lampung. Journal of Natural Sciences and Mathematics Research. 10(1):35–45. doi:10.21580/jnsmr .v10i1.20320.
  6. Fernando R, Shintawati S, Alvita LR, Wulandari YR, Ramandani AA, Arief F. 2024. Silica adsorption from boiler effluent using activated charcoal derived from palm oil fibre waste with H3PO4 activator. CHEESA: Chemical Engineering Research Articles. 7(2):75–83. doi:10.25273/che esa.v7i2.17500.75-83.
  7. Friederich MC, van Leeuwen T. 2017. A review of the history of coal exploration, discovery and production in Indonesia: Theinterplayoflegalframework, coalgeologyandexploration strategy. International Journal of Coal Geology. 178:56–73. doi:10.1016/j.coal.2017.04.007.
  8. Gani A, Erdiwansyah, Desvita H, Munawar E, Mamat R, Nizar M, Darnas Y, Sarjono RE. 2024. Comparative analysis of HHV and LHV values of biocoke fuel from palm oil mill solidwaste. CaseStudiesinChemicalandEnvironmental Engineering. 9:100581. doi:10.1016/j.cscee.2023.100581.
  9. Hazman N, Mat Isa N, Nasir NF, Hussein M, DS A. 2024. The proximate and ultimate composition of pulverised coconutshell. InternationalJournalofIntegratedEngineering. 16(2). doi:10.30880/ijie.2024.16.02.028.
  10. Herlambang MJ, Ramandani AA, Cendekia D, Alvita LR, Wulandari YR, Shintawati S, Purnani MS, Efendi DAMN. 2023. Optimization and characterization of adsorbent from palm kernel shell waste using H3PO4 activator. CHEESA: Chemical Engineering Research Articles. 6(2):118. doi: 10.25273/cheesa.v6i2.15906.118-125.
  11. Jume HI, Alhaji BY, Ahmadu U, Ibrahim SO, Agida M, Muazu A, Ndamitso MM, Abdulkadir B. 2024. Production of briquettes from a blend of rice husks and palm kernel shells as an alternative solid fuel. Fudma Journal of Sciences. 8(3):353–360. doi:10.33003/fjs-2024-0803-2506.
  12. Kamal Baharin NS, Cherdkeattikul S, Kanada N, Hara H, Mizuno S, Sawai T, Fuchihata M, Ida T. 2022. Impact and effectiveness of Bio-Coke conversion from biomass waste as alternative source of coal coke in Southeast Asia. Journal of Material Cycles and Waste Management. 25(1):17–36. doi:10.1007/s10163-022-01539-x.
  13. Ke D, Zhang L, Yan J, Lei Z, Lei Z, Li Z, Ren S, Wang Z, Shui H. 2023. Interactions of co-firing coal gangue and high sodium coal: Combustion characteristics and emission behaviors of polluting gases. Fuel. 339:127382. doi:10.101 6/j.fuel.2022.127382.
  14. Kurniawan A, Primandari SRP, Rifelino, Purwantono, Jasman, Lapisa R, Nurdin H, SaputraD. 2024. Sustainablecomparison: Performance of lignite coal and fiber-shell fuels at a palm oil mill in West Sumatera. International Conference on Sustainability Engineering Education. Volume 3199. AIP Publishing. p. 20017. doi:10.1063/5.0217179.
  15. Laresha MHA, Cendekia D, Ermaya D, Shintawati, Ramandani AA. 2024. Adhesive formulation and particle size in making bio-briquettes from bamboo pyrolysis waste charcoal. Jurnal Litbang Industri.
  16. Larki I, Zahedi A, Asadi M, Forootan MM, Farajollahi M, Ahmadi R, Ahmadi A. 2023. Mitigation approaches and techniques for combustion power plants flue gas emissions: A comprehensive review. Science of The Total Environment. 903:166108. doi:10.1016/j.scitotenv.2023.166108.
  17. Ma Z, Wang J, Zhou H, Zhang Y, Yang Y, Liu X, Ye J, Chen D, Wang S. 2018. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities. Fuel Processing Technology. 181:142–156. doi:10.1016/j.fuproc .2018.09.020.
  18. Nelson PF. 2023. Environmental issues: emissions, pollution control, assessment, and management. Elsevier. p.31–76. doi:10.1016/b978-0-12-824327-5.00015-6.
  19. Olugbade T, Ojo O, Mohammed T. 2019. Influence of binders on combustion properties of biomass briquettes: a recent review. BioEnergy Research. 12(2):241–259. doi: 10.1007/s12155-019-09973-w.
  20. Oyelami S, Oyediran Adedeji W, Olukunle Ademokoya F, Temitayo Oyewo A, Adenike Oyewole K, Joshua Ojerinde B, Olukayode O. 2024. Unizik journal of technology, production and mechanical systems (ujtpms) optimum proportion of starch binder and palm kernel shell hybrid additive in the formation of sawdust based composite briquette. Unizik Journal of Technology, Production and Mechanical Systems (UJTPMS). 3(1). https://journals.unizik.edu.ng/ujtpms/article/view/2997.
  21. Rahman D, Raphael F. 2025. Optimizing the utilization of coal in indonesia through downstreaming: economic benefits, challenges and solutions. Economic Military and Geographically Business Review. 2(2). doi:10.61511/emagrap .v2i2.2025.1472.
  22. Rahman H, Rasai J, Ryadin AR, Rope R, Sanmas SA, Asnawi A, Febrina E. 2023. Preparation and characterization of biobriquettes from coconut shell, nutmeg shell, and canary shell waste in north maluku, indonesia. Iranian Journal of Chemistry and Chemical Engineering. 43(6):1–24. https://doi.org/10.30492/ijcce.2024.2013135.6257.
  23. Ria Wulandari Y, Sukma VA, Supriadi D, Mufti AA, Variyana Y, Silmi FF, Ramandani AA, Sudibyo S, Wu HS. 2025. Kinetic investigation on thermal degradation of empty oil palm bunches pyrolysis. Periodica Polytechnica Chemical Engineering. doi:10.3311/ppch.38233.
  24. Saifurrizal MF. 2013. Preparation and characterization of biobriquettes from coconut shell, nutmeg shell, and canary shell waste in north Maluku, Indonesia. [Skripsi]: Universitas Jember.
  25. Salaudeen OH, Awulu JO, Deraor E. 2024. Determination of combustible properties of palm kernel shell and palm fiber mixture for heat generation. 8(Iv). doi:10.56892 /bima.v8i1.586.
  26. Sardi B, Rachmawati H, Maulana TF, Setiawati E, Indrawan N, Mahfud M. 2023. Advanced bio-oil production from a mixture of microalgae and low rank coal using microwave assisted pyrolysis. Bioresource Technology Reports. 21:101367. doi:10.1016/j.biteb.2023.101367.
  27. Sattasathuchana S, Parnthong J, Youngian S, Faungnawakij K, Rangsunvigit P, Kitiyanan B, Khunphonoi R, Wanichsombat A, Grisdanurak N, Khemthong P. 2023. Energy efficiency of bio-coal derived from hydrothermal carbonized biomass: Assessment as sustainable solid fuel for municipal biopower plant. Applied Thermal Engineering. 221:119789. doi:10.1016/j.applthermaleng.202 2.119789.
  28. Szufa S, Piersa P, Junga R, Błaszczuk A, Modliński N, Sobek S, Marczak-Grzesik M, Adrian Ł, Dzikuć M. 2023. Numerical modeling of the co-firing process of an in situ steamtorrefied biomass with coal in a 230 MW industrial-scale boiler. Energy. 263:125918. doi:10.1016/j.energy.2022.12 5918.
  29. Utami IS, Rusdiana D, Nahadi, Suwarma IR. 2024. Making briquettes variation ingredient durian peel, husk rice, and shell coconut – impact on strength, burnability, temperature, and calorific value. KnE Life Sciences. doi:10.185 02/kls.v8i1.15594.
  30. Vershinina K, Dorokhov V, Romanov D, Strizhak P. 2022. Ignition, combustion, and mechanical properties of briquettes from coal slime and oil waste, biomass, peat and starch. Waste and Biomass Valorization. 14(2):431–445. doi:10.1007/s12649-022-01883-x.
  31. Wang W. 2023. Integrated assessment of economic supply and environmental effects of biomass co-firing in coal power plants: a case study of jiangsu, china. Energies. 16(6):2725. doi:10.3390/en16062725.
  32. Wulandari YR, Rezki AS, Afifah DA, Hamdi R. 2024. Pengendalian proses pada katalitik pirolisis serabut kelapa sawit dengan menggunakan reaktor batch. Reactor: Journal of Research on Chemistry and Engineering. 5(2):71. doi: 10.52759/reactor.v5i2.158.
  33. Yenny O, Darajati MR. 2023. Effectiveness of cpo oil export prohibition policy: Case study on communities in border regions. Pranata Hukum. 18(1):1–10. doi:10.36448/prana tahukum.v18i1.298.
  34. Yulia A, Siahaan HP, Prihantoro R. 2024. The characteristic of biobriquette from shell charcoal and coconut husk with crude palm oil liquid waste as adhesive. International Energy Journal. 24(2):133–140. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/3039/pdf.
  35. Zou F, Manthiram A. 2020. A review of the design of advanced binders for high‐performance batteries. Advanced Energy Materials. 10(45). doi:10.1002/aenm.202002508.