Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 0 No 0.1 (3000): ONLINE FIRST

Analisis CFD unjuk kerja kolektor photovoltaic/thermal berdasarkan metode pendinginan permukaan atas dan bawah

DOI
https://doi.org/10.22146/jrekpros.18652
Submitted
December 22, 2024
Published
July 5, 2025

Abstract

This research analyses the effect of radiation and fluid mass flow rate variations on the thermal performance of Photovoltaic/Thermal (PV/T) collectors based on top-surface cooling and bottom-surface cooling methods. This research uses the ANSYS Fluent simulation method based on radiation variations of 500 W/m2, 750 W/m2, 1000 W/m2, 1250 W/m2 and fluid mass flow rates of 0.02 kg/s, 0.04 kg/s, 0.06 kg/s. The research results show that cooling the top surface is proven to be more effective than cooling the bottom surface. The highest temperature difference between top and bottom cooling for PV surface temperature is 2.64 oC at a mass flow rate of 0.04 kg/s and radiation of 1250 W/m2, meanwhile, the difference in average working fluid temperature is lower than 1 oC. For a three-fold increase in fluid flow rate from 0.02 kg/s to 0.06 kg/s, the respective temperature decrease for the PV surface and working fluid is 7% and 14% respectively for both types of working fluid flow.

References

  1. Amrizal A, Amrul A, Wardono H, Salsabillah AE, Sasongko AD. 2021. Simulasi unjuk kerja kolektor surya PV/T berdasarkan bentuk penampang pipa absorber. Journal of Science and Applicative Technology. 5(1):245. doi:10.35472/j sat.v5i1.375.
  2. Amrizal A, Yonanda A. 2023. Unjuk kerja termal dan elektrikal kolektor photovoltaic/thermal (PV/T) berdasarkan ketebalan sirip absorber. MECHANICAL. 13(1):23–27. doi:10.23960/mech.v13i1.2981.
  3. Bizzy I,Sipahutar R,Yanis M,Sofijan A. 2021. Penerapanlistrik desasecaraon-gridplndalamupayapenghematanbiaya listrik. https://ejournal.ft.unsri.ac.id/index.php/avoer/article/view/932/573.
  4. Chow TT. 2010. A review on photovoltaic/thermal hybrid solar technology. Applied Energy. 87(2):365–379. doi:10.1016/j. apenergy.2009.06.037.
  5. Grubišić-Čabo F, Nižetić S, Marco TG. 2016. Photovoltaic panels: A review of the cooling techniques. Transactions of Famena. 40(1):63–74. https://hrcak.srce.hr/file/234790.
  6. Harahap YP, Tharo Z, Rahmaniar R. 2024. Studi perancangan pembangkit listrik tenaga surya di laboratorium tek-
  7. nik elektro universitas pembangunan pancabudi. INTECOMS: Journal of Information Technology and Computer Science. 7(4):1306–1314. doi:10.31539/intecoms.v7i4.113 22.
  8. Harie Satiyadi J, Muhamad Hudan R, Asrori A. 2024. Analisis pengaruh suhu panel surya terhadap output panel performance. Journal of Mechanical Engineering. 1(1):42–51. doi:10.47134/jme.v1i1.2189.
  9. Hasrul R. 2021. Sistem pendinginan aktif versus pasif di meningkatkan output panel surya. Jurnal Sain, Energi, Teknologi & Industri. 5(2):79–87. https://journal.unilak.ac.id/index.php/SainETIn/article/view/7024/3179.
  10. Heri J. 2012. Pengujian sistem pembangkit listrik tenaga surya solar cell kapasitas 50 WP. Engineering. 4(1):47–55. http://id.portalgaruda.org/?ref=browse&mod=viewarticle&article=116861.
  11. Laksana EKAP, Sanjaya O, Sujono S, Broto S, Fath N. 2022. Sistem pendinginan panel surya dengan metode penyemprotan air dan pengontrolan suhu air menggunakan peltier. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika. 10(3):652. doi:10.267 60/elkomika.v10i3.652.
  12. Lubna L, Sudarti S, Yushardi Y. 2021. Potensi energi surya fotovoltaik sebagai sumber energi alternatif. Pelita : Jurnal Penelitian dan Karya Ilmiah. 21(1):76–79. doi:10.33592/p elita.v21i1.1269.
  13. Nižetić S, Giama E, Papadopoulos AM. 2018. Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques. Energy Conversion and Management. 155:301–323. doi:10.1016/j.enconman.2017.10.071.
  14. Rahajoeningroem T, Jatnika I. 2022. Sistem pendingin otomatis panel surya untuk peningkatan daya output berbasis mikrokontroler. Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan. 10(1):69–77. doi:10.34010/telekontran.v10i1.4712.
  15. Simbolon BY, Gultom S, Lubis Z, Siregar AH. 2018. Simulasi aliran fluida pada rumah turbin vortex dengan 5 variasi lubang buang menggunakan computatinal fluid dynamics. DINAMIS. 6(3):13. doi:10.32734/dinamis.v6i3.7136.
  16. Smith MK, Selbak H, Wamser CC, Day NU, Krieske M, Sailor DJ, Rosenstiel TN. 2014. Water cooling method to improvetheperformanceoffield-mounted, insulated, andconcentrating photovoltaic modules. Journal of Solar Energy Engineering. 136(3). doi:10.1115/1.4026466.