Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 8 No 1 (2014): Volume 8, Number 1, 2014

Review model dan parameter interaksi pada korelasi kesetimbangan uap-cair dan cair-cair sistem etanol (1) + air (2) + ionic liquids (3) dalam pemurnian bioetanol

DOI
https://doi.org/10.22146/jrekpros.5017
Submitted
November 15, 2023
Published
June 30, 2014

Abstract

Bioethanol is a promising renewable energy resource which can substitute non-renewable energy such as fossil-fuel. Ethanol and water produce azeotropic point in atmospheric pressure condition which can not be separated by ordinary distillation. New class of eco-friendly compounds to be used as entrainer are known as ionic liquids. These ionic liquids are used experimentally in extractive distillation and liquid-liquid extraction. Many researches have been conducted in ethanol (1) + water (2) + ionic liquids (3) systems including vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE). These researches also produce binary interaction paramaters obtained from equilibrium data correlation using Nonrandom two-liquid (NRTL), Electrolyte-nonrandom two-liquid (e-NRTL), Universal quasi-chemical (UNIQUAC), and Antoine equation. UNIQUAC Functional-group activity coefficients (UNIFAQ) was also used to predict the equilibrium data. Models and binary interaction parameters were used for design, optimization, and control of extractive distillation column and liquid-liquid extraction in bioethanol purification. This paper provides a critical review of models and binary interaction parameters for 43 ethanol (1) + water (2) + ionic liquids (3) systems to obtain appropriate models and binary interaction parameters. Generally, NRTL is the most frequent used model, it is used in 40 systems. NRTL provides satisfactory results in vapor-liquid equilibrium and liquid-liquid equilibrium data correlation due to its characteristics which can correlate well in low pressure polar system. It is shown by small number of root mean square deviation (RMSD) for ∆y and ∆T and average relative deviation (ARD). It can also fit equilibrium data behavior with a good agreement.

References

  1. Abrams, D., S., and Prausnitz, J.M. (1975), Statistical Thermodynamics of Liquid Mixtures : A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AlChE J., 21 (1), 116-128.
  2. Calvar, N., Gómez, E.,González, B., Domínguez, A. (2010), Experimental Vapor-Liquid Equilibria for the Ternary System Ethanol+Water+1-Ethyl-3- methylpyridinium Ethylsulfate and the Corresponding Binary Systems at 101.3 kPa : Study of the Effect of Cation, J. Chem. Eng. Data, 55, 2786–2791.
  3. Calvar, N., González, B., Gómez, E., and Domínguez, A. (2006), Vapor-Liquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3- methylimidazolium Chloride and the Corresponding Binary Systems at 101.3 kPa, J. Chem. Eng. Data, 51, 2178–2181.
  4. Calvar, N., González, B., Gómez, E., and Domínguez, A. (2008), Study of the behaviour of the azeotropic mixture ethanol–water with imidazolium-based ionic liquids, Fluid Phase Equilibria, 259, 51–56.
  5. Calvar, N., González, B., Gómez, E., and Domínguez, A. (2008), Vapor–Liquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3- methylimidazolium Ethylsulfate and the Corresponding Binary Systems Containing the Ionic Liquid at 101.3 kPa, J. Chem. Eng. Data, 53, 820–825.
  6. Calvar, N., González, B., Gómez, E., and Domínguez, A., (2009), Vapor−Liquid Equilibria for the Ternary System Ethanol + Water + 1-Butyl-3- Methylimidazolium Methylsulfate and the Corresponding Binary Systems at 101.3 kPa, J. Chem. Eng. Data,54, 1004-1008.
  7. Cardona, C.A., Sanchez, O.J. (2007), Fuel Ethanol Production : Process Design Trends and Integration Opportunities, Bioresour. Technol. 98, 2415–2457.
  8. Chapeaux, A., Simoni, L. D., Ronan., T. S., Stadther, M. A., and Brennecke, J., F, (2008), Extraction of alcohols from water with 1-hexyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide. Green Chem., 10, 1301-1306.
  9. Chen, C. C., Britt,H. I., Boston,J. F.,dan Evans, L. B. (1982), Local Composition Model for Excess Gibbs Energy of Electrolyte Systems, AIChE J., 28(4), 588.
  10. Chen, C. C., dan Evans, L. B. (1986), A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems, AIChE J., 32(3), 444.
  11. Chowdhury, S. A.,Scott, J.L., dan MacFarlane, D. R. (2008), Ternary mixtures of phosphonium ionicliquids + organic solvents + water. Pure Appl. Chem., 80 (6), 1325–1335.
  12. Ge, Y., Zhang, L., Yuan, X., Geng, W., dan Ji, J. (2008), Selection of ionic liquids as entrainers for separation of (water + ethanol), J. Chem. Thermodyn., 40, 1248-1252.
  13. Geng, W., Zhang, L., Deng, D., Ge, Y., dan Ji, J.(2010), Experimental Measurement and Modeling of Vapor-Liquid Equilibrium for the Ternary System Water+Ethanol+1-Butyl-3- methylimidazolium Chloride, J. Chem. Eng. Data, 55, 1679–1683.
  14. Gmehling, J., Onken,U. (1977), Vapour–liquid Equilibrium Data Collection, vol. 1,DECHEMA, Frankfurt, (part 1), p. 53, and p. 154.
  15. Gmehling, J.; Onken, U.; Rearey-Nies, J. R. (1988), Vapor-Liquid Equilibrium Data Collection, DECHEMA: Frankfurt, Vol. I, Part Ib.
  16. Haynes, W. M., Lide, D. R. (2011),CRC Handbook of Chemistry and Physics, 91st ed.,Internet Version.
  17. Hua, X., dan Qingsong, L. (2012), Isobaric VaporLiquid Equilibria for Ethanol-Water System Containing Ionic Liquids at Atmospheric Pressure. CIESC Journal,63,1678–1683.
  18. Jiang, X. X., Wang, J. F., Li, C. X., Wang, L. M., dan Wang, Z. H. (2007), Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid1-ethyl-3-ethylimidazolium diethylphosphate, J. Chem. Thermodynamics, 39, 841–846.
  19. Jork, C., Seiler, M., Beste, Y., A., dan Arlt, W. (2004), Influence of Ionic Liquids on the Phase Behavior of Aqueous Azeotropic Systems. J. Chem. Eng. Data, 49, 852-857.
  20. Li, Q., Zhu, W., Wang, H., Ran, X., Fu, Y., dan Wang, B., (2012),Isobaric Vapor−Liquid Equilibrium for the Ethanol + Water + 1,3- Dimethylimidazolium Dimethylphosphate System at 101.3 kPa,J. Chem. Eng. Data, 57, 696−700.
  21. Li, X., M., Shen, C., dan Li, C., X., (2012), Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol. J. Chem. Thermodyn., 53, 165-175.
  22. Liu, X., Lei, Z., Wang, T., Li, Q., dan Zhu, J, (2012), Isobaric Vapor−Liquid Equilibrium for the Ethanol + Water +2 Aminoethanol Tetrafluoroborate System at 101.3 kPa, J. Chem. Eng. Data, 57, 3532–3537.
  23. Marsh,K., Deev, A., Wu, A., Tran, E., dan Klamt, A., (2002), Room Temperature Ionic Liquids as Replacement for Conventional : A Review. Korean J. Chem. Eng., 19, 357–362.
  24. Mills, G.A. Ecklund, E.E. (2010), Alcohols as Components of Transportation fuels, Ann. Rev. Energy, 12, 47–80.
  25. Mock, B., Evan, L. B.,danChen, C., -C. (1986),Thermodynamic Representation of Phase Equilibria of Mixed-Solvent Electrolyte Systems, AlChE J., 32 (10),1655-1664.
  26. Mokhtarani, B., dan Gmehling, J. (2010), (Vapour + liquid) equilibria of ternary systems with ionic liquids using headspace gas chromatography, J. Chem. Thermodyn., 42, 1036–1038.
  27. Neves,C. M. S. S., Granjo, J. F. O., Freire, M. G., Al Robertson, Olivera, N. M. C., dan Coutinho, J. A. P.(2011), Separation of ethanol–water mixtures by liquid–liquid extraction using phosphonium-based ionic liquids, Green Chem, 13, 1517-1526.
  28. Orchilles, A. V., Miguel, P. J., Vercher, E., Martı´nezAndreu. A. (2007). Isobaric vapor-liquid equilibria for ethyl acetate+ethanol+1-ethyl-3- methylimidazolium trifluoromethanesulfonate at 100 kPa.J. Chem.Eng. Data, 52, 2325–2330.
  29. Orchilles, A. V.; Miguel, P. J.; Vercher, E.; Martı´nezAndreu, A., (2008) ,Isobaric vapor-liquid equilibria for 1-propanol+water+1-ethyl-3- methylimidazolium trifluoromethanesulfonate at 100 kPa, J. Chem.Eng. Data, 53, 2426–2431.
  30. Orchilles, A.V., Miguel, P. J., Vercher, E., MartinezAndreu, A. (2010),Using 1-Ethyl-3- methylimidazoliumTrifluoromethanesulfonate as an Entrainer for the Extractive Distillation of Ethanol + Water Mixtures, J. Chem. Eng. Data, 55, 1669–1674.
  31. Pereiro, A.B., Araujo, J. M. M., Esperanca, J. M. S. S., Marrucho, I. M., dan Rebelo, L. P. N., (2012), Impact of Self-Aggregation on The Formation of Ionic-Liquids-Based Aqueous Biphasic Systems. J. Chem. Thermodyn., 46, 2–28.
  32. Renon, H. dan Prausnitz, J. M. (1968), Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J., 14 (1), 135-144.
  33. Seiler, M., Jork, C.,Kavarnou, A., Arlt, W., dan Hirsch, R., (2004), Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids, AIChE J., 50, 2439–2454.
  34. Shen, C., Li, X., M., Lu., Y., Z., dan Li, C., X., (2011), Effect of ionic liquid 1-methylimidazolium chloride on the vapour liquid equilibrium of water, methanol, ethanol, and {water + ethanol} mixture. J. Chem. Thermodyn., 43, 1748-1753
  35. Song,Y., dan Chen, C. C.(2009), Symmetric electrolyte nonrandom two-liquid activity coefficient model, Ind. Eng. Chem. Res.,48 (16), 7788–7797.
  36. Swatloski, R. P., Visser, A. E., Reichert,W. M., Broker,G. A., Farina,L. M., Holbrey, J. D., dan Rogers, R. D. (2002), On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chemistry, 4, 81–87.
  37. Taha, M., Teng, H. L., dan Lee, M. J., (2012), The Buffering-Out Effect and Phase Separation in Aqueous Solutions of EPPS Buffer with 1- Propanol, 2-Propanol, or 2-Methyl-2-Propanol at T = 298.15 K, J. Chem. Thermodyn., 47, 154-161.
  38. Tang, Y., Huang, H. Chien, I. (2003), Design of a Complete Ethyl Acetate Reactive Distillation System, J Chem. Eng. Jpn. 36, 1352–1363.
  39. Wang, J. F., Li, C. X., Wang, Z. H., Li, Z. J., dan Jiang, Y. B. (2007), Vapor pressure measurement for water, methanol, ethanol,and their binary mixtures in the presence of an ionic liquid1-ethyl3-methylimidazolium dimethylphosphate. Fluid Phase Equilibria, 255, 186–192.
  40. Wang, J. F., Li, X. M., Meng, H., Li, C. X., dan Wang, Z. H. (2009), Boiling temperature measurement for water, methanol, ethanol, and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di-, or triethanolamine at 101.3 kPa. J. Chem. Thermodynamics, 41, 167–170.
  41. Wang, J. P., Chun, X. L., dan Wang, Z. H. (2007), Measurement and Prediction of Vapor Pressure of Binary and Ternary Systems Containing 1-Ethyl-3-methylimidazolium Ethyl Sulfate. J. Chem. Eng. Data, 52, 1307–1312.
  42. Wasserscheid, P., dan Keim, W., (2000), Ionische Flussigkeiten - Neue “Lo-sungen” fur die U ¬bergangsmetallkatalyse. Angew. Chem.,112, 3926-3945.
  43. Zakariya, R. A., Zhao, J., Li, C. X., dan Wang, Z. H. (2005), Determination of Vapor Pressures for Binary and Ternary Mixtures Containing Ionic Liquid 1-propyl-3methylimidazolium Bromide Chin. J. Chem. Eng., 13, 791–795.
  44. Zhang, D., Deng, Y., Li, C., dan Chen, J., (2008), Separation of Ethyl Acetate-Ethanol Azeotropic Mixture Using Hydrophilic Ionic Liquids, Ind. Eng. Chem. Res., 47, 1995–2001.
  45. Zhao, J., Dong, C., C., Li, C., X., dan Meng, H.,dan Wang, Z., H. (2006), Isobaric vapor–liquid equilibria for ethanol–water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilibria, 242, 147–153.
  46. Zhao, J., Li, C., dan Wang, Z., H. (2006), Vapor Pressure Measurement and Prediction for Ethanol + Methanol and Ethanol + Water Systems Containing Ionic Liquids. J. Chem. Eng. Data, 51, 1755-1760.
  47. Zhao, J., Li, C., X, dan Wang, Z., H. (2006), Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid Phase Equilibria, 247, 190–198.