Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 13 No 2 (2019): Volume 13, Number 2, 2019

The effect of biomass-water ratio on bio-crude oil production from Botryococcus braunii using hydrothermal liquefaction process

DOI
https://doi.org/10.22146/jrekpros.48963
Telah diserahkan
November 16, 2023
Diterbitkan
Desember 31, 2019

Abstrak

Peruraian anaerobik merupakan salah satu bidang riset yang sangat menarik perhatian dalam era krisis energi. Biogas tidak hanya menyediakan energi alternatif, tetapi juga dapat mencegah pencemaran akibat limbah organik. Limbah lemak susu adalah substrat yang potensial untuk proses peruraian anaerobik karena memiliki potensi biogas teoritis yang tinggi akibat kandungan lemaknya yang tinggi. Namun, peruraian anaerobik dari limbah organik dengan kandungan lemak yang tinggi memiliki tantangan tersendiri. Hambatan utama dalam peruraian anaerobik dari limbah lemak susu adalah kecenderungan untuk membentuk lapisan padatan yang tidak larut dan mengapung di bagian atas fase cair. Fenomena ini menghambat akses bakteri hidrolisis terhadap substrat. Saponifikasi adalah salah satu cara untuk meningkatkan kelarutan lapisan padatan tersebut, sehingga meningkatkan ketersediaan substrat untuk bakteri. Saponifikasi akan mengubah kandungan lemak menjadi sabun yang memiliki gugus fungsi polar maupun non-polar. Gugus fungsi yang bersifat polar akan meningkatkan kelarutan substrat dalam air. Studi ini mengevaluasi pengaruh dari berbagai dosis larutan basa yang ditambahkan sebagai reaktan selama perlakuan awal saponifikasi terhadap peruraian anaerobik limbah lemak susu. Kinetika proses peruraian anaerobik dianalisis dengan menggunakan model matematika. Variasi dosis yang diamati pengaruhnya untuk perlakuan awal saponifikasi adalah 0,04 mol basa/g sCOD; 0,02 mol basa/g sCOD; dan nol (tanpa perlakuan awal saponifikasi). Dari penelitian ini, terbukti bahwa saponifikasi berhasil meningkatkan kelarutan limbah lemak susu dan juga ditunjukkan oleh nilai konstanta hidrolisis (kH) 0,00782/hari lebih tinggi dua puluh kali lipat dibandingkan dengan nilai kH 0,00032/hari pada reaktor tanpa saponifikasi. Akan tetapi, penelitian ini juga mengindikasikan bahwa bakteri asidogenik bawaan substrat terhambat kinerjanya oleh paparan pH yang tinggi selama perlakuan awal saponifikasi berlangsung sehingga hasil gas metan yang diperoleh lebih rendah daripada reaktor kontrol.

Referensi

  1. Badan Pusat Statistik Indonesia, 2013, Proyeksi Penduduk Indonesia Indonesia Population Projection 2010-2035, Badan Pusat Statistik Indonesia.
  2. Biswas, B., Arun Kumar, A., Bisht, Y., Singh, R., Kumar, J. and Bhaskar, T., 2017, Effects of temperature dan solvent on hydrothermal liquefaction of Sargassum tenerrimum algae, Bioresour. Technol., 242, 344–350.
  3. BP, 2017, BP Statistical Review of World Energy June 2017. Available at: https://www.bp.com/ content/dam/bp/en/corporate/pdf/energyeconomics/statistical-review-2017/bpstatistical-review-of-world-energi-2017-fullreport.pdf.
  4. Caprariis, B. de, Filippis, P. De, Petrullo, A. and M. Scarsella., 2017, Hydrothermal liquefaction of biomass: Influence of temperature dan biomass composition on the bio-oil production, Fuel., 208, 618–625.
  5. Dimitriadis, A. and Bezergianni, S., 2017, Hydrothermal liquefaction of various biomass dan waste feedstocks for biocrude production: A state of the art review, Renew.Sus. Energ.Rev., 68, 113–125.
  6. Gai, C.,Zhang, Y., W. T. Chen, P. Zhang, and Y. Dong, 2015, An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa dan Spirulina platensis, Energ.Conver.Manage., 96, 330–339.
  7. Gollakota, A. R. K., Kishore, N. and Gu, S., 2016, A review on hydrothermal liquefaction of biomass, Renew.Sus.Energ.Rev., 1–15.
  8. Huber, G. W., Sara, I. and Corma, A., 2006, Synthesis of Transportation Fuels from Biomass, Chem Rev., 2 (106), 4044–4098.
  9. Jena, U., Das, K.C. and Kastner, J.R., 2011, Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis, Bioreseource Technology, 102 (10), 6221-6229.
  10. Kang, S., Fu, J. and Zhang, G., 2018, From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis, Renewable and Sustainable Energy Reviews, 94, 340-362.
  11. Ky, T., Kim, S., Vu, H., E. Yeol, C. Lee, and Kim, J, 2017, Bioresource Technology A general reaction network dan kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp., Bioresour.Technol., 241, 610– 619.
  12. Mujiyanto, S. and Tiess, G., 2013, Secure energy supply in 2025: Indonesia’s need for an energy policy strategy, Energy Policy., 61(5), 31–41.
  13. Phang, S., Yeoing, H., Ganzon-Fortes, E.T., Lewmanomont, K., Prathep, A., Hau, L. N., Gerung, G.S. and Tan, K.S., 2016, Marine algae of the South China Sea bordered by Indonesia, Malaysia, Phippines, Singapore, Thailand and Vietnam, Raffles Bulletin Of Zoology, 34, 15-39.
  14. Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal, Jr. M. J., and Tester, J. W., 2008, Thermochemical biofuel production in hydrothermal media: A review of sub- dan supercritical water technologies, Energ. Environ. Sci., 1 (1), 32.
  15. Sari, A. M., Mayasari, H. E., Rachimoellah and S. Zullaikah., 2013, Pertumbuhan dan kandungan lipida dari Botryococcus braunii dalam media air laut, Jurnal Teknik POMITS, 2 (1), 1–6.
  16. Sugiyono, A., 2016, Outlook Energi Indonesia 2016: Pengembangan Energi untuk Mendukung Industri Hijau., Jakarta. Available at: www.bppt.go.id.
  17. Susilaningsih, D., Khuzaemah, Rahman, D.Y. and Sekiguchi, H., 2014, Screening for lipid depositor of Indonesian microalgae isolated from seashore and peat-land, Int. J. Hydrogen Energy, 39, 19394-19399.
  18. Thiruvenkadam, S., Izhar, S., Yoshida, H., Danquah, M.K. and Harun, R., 2015, Process application of subcritical water extraction (SWE) for algal bio-products and biofuels production. Appl. Energy.,154, 815–28.
  19. Valdez, P. J., Nelson, M. C., Wang, H. Y., Lin, X. N. and Savage., P. E., 2012, Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables dan analysis of the product fractions, Biomass. Bioenerg., 46, 317–331.
  20. Valdez, P. J., Tocco, V. J. and Savage, P. E., 2014, A general kinetic model for the hydrothermal liquefaction of microalgae, Bioresour. Technol., 163, 123–127.
  21. Vardon, D.R., Sharma, B.K., Scott J., Yu, G., Wang, Z., Schideman, L., Zhang, Y. and Strathmann, T.J., 2011, Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge, Bioresour. Technol., 102 (17), 8295–303.
  22. Vo, T.K., Lee O.K, Lee, E.Y., Kim, C.H., Seo, J.W., Kim, J. and Kim, S.S., Kinetics study of the hydrothermal liquefaction of the microalga Aurantiochytrium sp. KRS101. Chem. Eng. J. 2016, 306, 763–71.
  23. Xu, D. and Savage, P. E., 2017, Bioresource technology effect of temperature, biomasswater ratio, and Ru/C catalyst on waterinsoluble dan water-soluble biocrude fractions from hydrothermal liquefaction of algae, Bioresour.Technol., 239, 1–6.