Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 13 No 2 (2019): Volume 13, Number 2, 2019

Pengaruh proses swelling dengan supercritical gas CO2 terhadap penurunan energi ikatan senyawa hidrokarbon vacuum residue

DOI
https://doi.org/10.22146/jrekpros.44784
Telah diserahkan
November 16, 2023
Diterbitkan
Desember 31, 2019

Abstrak

Penelitian ini bertujuan untuk mengembangkan teknologi pemanfaatan vacuum residue dengan mengurangi densitas, viskositas dan energi ikatan. Pada penelitian ini digunakan reaktor batch yang dilengkapi dengan gas injeksi CO2 dalam bentuk proses swelling. Penelitian dilakukan dengan menerapkan variasi temperatur  antara 60-100 °C dan tekanan fluks CO2 bervariasi antara 1-5 MPa. Rentang temperatur dan tekanan fluks CO2 yang digunakan dalam penelitian ini dimaksudkan untuk mengurangi energi ikatan senyawa hidrokarbon dalam bentuk padatan vacuum residue. Selanjutnya, serangkaian waktu reaksi dilakukan mulai dari 10, 15, 20, 25, dan 30 menit untuk mendapatkan waktu reaksi yang optimum. Hasil penelitian menunjukkan bahwa pada temperatur konstan (100 °C), tekanan konstan (5 MPa) dan variasi waktu diperoleh penurunan densitas (0,919–0,902 g/cm3), viskositas (495-166 cSt), dan penurunan energi ikatan (ΔG) menjadi 8,627–6,436 Js.

Referensi

  1. Abedini, A., Mosavat, N., Torabi, F., 2014, Determination of minimum miscibility pressure of crude oil – CO2 system by oil swelling/extraction test, Energy Technol., 2, 431 – 439.
  2. Alam, Md. S., Ashokkumar, A. B., Siddiq, M., 2019, The density, dynamic viscosity and kinematic viscosity of protic and aprotic polar solvent (pure and mixed) systems: An experimental and theoretical insight of thermophysical properties, J. Mol. Liq., 18, 322 - 350.
  3. Jechura, J, 2018, Refinery Feedstocks & Products Properties & Specification. https://inside. mines.edu/~jjechura/Refining/02_Feedstocks_ &_Products.pdf
  4. Huy, N. C., Shin, W. E., 2015, Hierarchical macro–mesoporous Al2O3-supported NiK catalyst for steam catalytic cracking of vacuum residue, Fuel, 169, 1 – 6
  5. Noroodin, NSM., Salleh, LM., Hartati, M, NM., 2017, Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds, Materials Science of Engineering, 162, 1757 – 899X.
  6. Sorenssen, M, A., 2013, Chemical Potential and Gibbs Distribution. https://www.uio.no/ studier/emner/matnat/fys/FYS2160/h13/book/ thermal-lecture-07.pdf
  7. Sotelo, D., Contreras, F. A., Sotelo, C., Jimenez, G., Canales. C. L., 2017, Design and implementation of a control structures for quality products in crude oil atmospheric distillation column, ISA Transaction, 17, 10 - 16
  8. Stratiev, D., Nedelchev, A., Shishkova, I., Ivanov, A., Sharafutdinov, I., Nikolova, R., Mitkova, M., Yordanov, D., Rudnev, N., Belchev, Z., Atanassova, V., Atanassov, K., 2015, Dependence of visbroken residue viscosity and vacuum residue conversion in a commercial visbreaker unit on feedstock quality, Fuel Process. Technol., 138, 595 - 604.