Lewati ke menu navigasi utama Lewati ke konten utama Lewati ke footer situs

Artikel penelitian

Vol 13 No 2 (2019): Volume 13, Number 2, 2019

Synthesis of curcumin nanoparticle from Curcuma xanthorrhiza Roxb. extract by solvent-antisolvent precipitation method

DOI
https://doi.org/10.22146/jrekpros.50909
Telah diserahkan
November 16, 2023
Diterbitkan
Desember 31, 2019

Abstrak

Kurkumin merupakan salah satu senyawa aktif yang terkandung dalam ekstrak temulawak (Curcuma xanthorrhiza Roxb.) yang banyak digunakan untuk aplikasi biomedis. Meskipun demikian, pemanfaatan kurkumin masih terbatas dikarenakan sifatnya yang hidrofobik, stabilitas yang rendah, serta kelarutan di air yang rendah. Modifikasi kurkumin serta optimisasi proses ekstraksi maupun purifikasi perlu dilakukan untuk mengatasi kelemahan tersebut. Salah satu pendekatan yang dapat dilakukan adalah dengan membuat kurkumin dalam ukuran nano. Penelitian ini bertujuan untuk mengoptimasi pembuatan nanopartikel kurkumin dari ekstrak Curcuma xanthorrhiza Roxb. menggunakan metode presipitasi solven-antisolven. Stabilitas warna kurkumin dijaga dengan mengontrol pH saat persiapan bahan baku. Hasil nanopartikel kurkumin yang didapat kemudian dianalisis menggunakan particle size analysis (PSA). Hasil menunjukkan bahwa warna ekstrak Curcuma xanthorrhiza Roxb. dapat dijaga pada kondisi asam. Pada pH 3, ekstrak berwarna kuning cerah sedangkan pada pH netral, warna ekstrak berubah menjadi coklat gelap. Hasil PSA menunjukkan bahwa kondisi pengadukan yang optimum pada saat proses presipitasi diperoleh menggunakan kecepatan pengadukan 500 rpm selama 45 menit yang menghasilkan nanopartikel kurkumin dengan ukuran 164,37±3,29 nm. Dengan mengontrol ekstrak pada pH 3 selama proses ekstraksi dan menggunakan kondisi pengadukan optimum pada 500 rpm selama 45 menit pada proses presipitasi, kurkumin dengan stabilitas dan kelarutan yang baik dapat diperoleh.

Referensi

  1. Aftab, N., and Vieira A., 2010, Antioxidant activities of curcumin and combinations of this curcuminoid with other phytochemicals, Phytother. Res., 24, 500–502.
  2. Aggarwal, B. B., Kumar, A., and Bharti, A. C., 2003, Anticancer potential of curcumin: preclinical and clinical studies, Anticancer Res., 23, 363–398.
  3. Anand, P, Kunnumakkara A. B., Newman R. A., and Aggarwal B. B., 2007, Bioavailability of curcumin: Problems and promises, Mol. Pharm., 4, 807–818.
  4. Badan Pusat Statistik (BPS), 2015, Statistics of Medical Plants Indonesia, BPS, Jakarta, pp 9.
  5. Devalapally, H., Chakilam, A., and Amiji M. M., 2007, Role of nano- technology in pharmaceutical product development, J. Pharm. Sci., 96, 2547–2565.
  6. Harjanti, R. S., 2008, Pemungutan kurkumin dari kunyit (Curcuma domestica val.) dan pemakaiannya sebagai indicator analisis volumetri, J. Rek. Pros., 2(2), 49-54.
  7. Jurenka, J. S., 2009, Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research, Altern. Med. Rev., 14, 141– 153.
  8. Kakran, M., Sahoo N. G., Tan, I., and Li, L., 2012, Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods, J. Nanopart. Res., 14, 1-11.
  9. Kharat, M., Du, Z., Zhang, G., and Mcclements, D. J., 2016, Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment, J. Agr. Food Chem., 65(8), 1525-1532.
  10. Kong, G., Braun, R. D., and Dewhirst, M. W., 2000, Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size, Cancer Res., 60, 4440-4445.
  11. Kumavat, S. D., Chaudhari, Y. S., Borole P., Mishra, P., Shenghani, K., and Duvvuri, P., 2013, Degradation studies of curcumin, IJPRR, 3(2), 50-55.
  12. Lal, J., 2012, Turmeric, curcumin and our life: A review, Bull. Environ. Pharmacol. Life Sci., 1(7), 11-17.
  13. Nihayati, E., Wardiyati, T., Retnowati, R., and Soemarno, 2013, The curcumin content of temulawak (Curcuma xanthorriza Roxb.) rhizome as affected by N, K and micronutrients B, Fe, Zn, Agrivita, 35(3), 218-226.
  14. Pattekari, P., Zheng, Z., Zhang, X., Levchenko, T., Torchilin, V., and Lvov Y., 2011, Topdown and bottom-up approaches in production aqueous nanocolloids of paclitaxel, Phys. Chem. Chem. Phys., 13, 9014–9019.
  15. Rizvi, S. A. A., and Saleh, A. M., 2018, Applications of nanoparticle systems in drug delivery technology, SPJ, 26 (1), 64-70.
  16. Shukla, P., Sharma, A., and Sharma, A., 2017, Food additives from an organic chemistry perspective, MOJBOC, I (3), 70-79.
  17. Yadav, D., and Kumar, N., 2014, Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance, Int. J. Pharmaceutics, 477, 564-577.