Artikel penelitian
Vol 14 No 2 (2020): Volume 14, Number 2, 2020
Tip-cylinder electrode plasma to enhance the coating of conductive yarn process
Department of Textile Engineering, Politeknik STTT Bandung, Bandung, Indonesia
Department of Textile Engineering, Politeknik STTT Bandung, Bandung, Indonesia
Department of Textile and Apparel Engineering, Politeknik STTT Bandung, Bandung, Indonesia
Department of Physics, Universitas Nusa Cendana, Kupang, Indonesia
Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
Abstrak
Penelitian ini bertujuan untuk mengembangkan bahan tekstil konduktif menggunakan benang tekstil poliester dengan mengaplikasikan metode knife coating dan pre-treatment plasma elektroda tip-cylinder. Pada penelitian ini dilakukan pelapisan dengan tinta karbon pada benang poliester stapel yang diberi perlakuan awal dengan plasma generator dan dilapisi dengan metode pelapisan knife coating. Konduktivitas listrik benang konduktif yang dihasilkan dari penelitian ini dibagi menjadi dua jenis, yaitu benang tanpa perlakuan plasma dan dengan perlakuan plasma dengan perbandingan konsentrasi air dan tinta karbon sebesar 1:1 dan 2:1. Hasil konduktivitas listrik dengan perlakuan plasma dan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 masing-masing adalah 69005 (Ωm)‑1 dan 50144,25 (Ωm)-1, sedangkan hasil konduktivitas listrik untuk benang dengan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 tanpa perlakuan plasma masing-masing adalah 18197,64 (Ωm)-1 dan 8873,54 (Ωm)-1. Hasil penelitian menunjukkan bahwa konsentrasi tinta karbon dan air serta perlakuan plasma berpengaruh terhadap nilai konduktivitas benang serta adanya pre-treatment plasma dapat meningkatkan proses coating tinta konduktif pada benang.
Referensi
Cherenack, K., Zysset, C, Kinkeldei, T., Münzenrieder, N., and Tröster, G., 2010, Woven electronic fibers with sensing and display functions for smart textiles, Adv. Mater., 2(45), 5178-5182
Dias, T., and Ratnayake, A., 2015, Integration of Micro-Electronics with Yarns for Smart Textiles, in: Dias, T., Electronic Textiles, Elsevier, Amsterdam 109-116.
Fugetsu, B., Akiba, E., Hachiya, M., and En., 2009, The production of soft, durable, and electrically conductive polyester multifilament yarns by dye-printing them with carbon nanotubes, Carbon, 47(2), 527-530.
Jost K, Diona G., and Gogotsi Y., 2014, Textile energy storage in perspective, J. Mater. Chem. A., 2, 10776-10787.
Kang, S.W, Choi, H., Park, H.I, Choi, B.G., Im, H., Shin, D., Jung, Y.G., Lee, J.Y., Park, H.W., Park, S., and Roh, J.S., 2017, The development of an IMU integrated clothes for postural monitoring using conductive yarn and interconnecting technology, Sensors; 17, No. 560
Kim, B., and Koncar, V., 2006, Polyaniline-coated PET conductive yarns: Study of electrical, mechanical, and electro-mechanical properties, J. Appl. Polym. Sci., 1252–1256.
Linz, T., Kallmayer, C., Aschenbrenner, R., and Reichl, H., 2006, fully integrated EKG shirt based on embroidered electrical interconnections with conductive yarn and miniaturized flxible electronics, in: International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA
Locher, I, Kirstein, T., and Tröster, G., 2005, Temperature profile estimation with smart textiles, in: Proceedings of the International Conference on Intelligent Textiles; September; Smart Clothing, Well-being, and Design, Tampere, Finland, pp. 19-20.
Lorussi, F, Scilingo, E.P., and Tesconi, M., 2005, Strain sensing fabric for hand posture and gesture monitoring, IEEE Transactions on Information Technology in Biomedicine, 9(3), 372-381
Mehmood, T., Kaynak, A., Dai, X. J., Kouzani, A.,Magniez, K.,de Celis, D. R., Hurren, C. J, Plessis, J., 2014, Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion, Mater. Chem. Phys., 143, 668–675.
Murti, W. and Putra, V.G.V., 2020, Studi pengaruh perlakuan plasma terhadap sifat material antibakteri kain kassa menggunakan minyak atsiri (Zingiber officinale rosc), Jurnal Teori dan Aplikasi Fisika, 8 (1), 69-76.
Park, S., Kim, J. and Park, C.H., 2017, Influence of micro and nano-scale roughness on hydrophobicity of a plasma treated woven fabric, Text. Res. J., 87, 193–207.
Pawitro, 1973, Teknologi Pemintalan, Institut Teknologi Tekstil, Bandung.
Prayudie, U., and Novarini, E., 2015, Modifikasi permukaan serat poliester menggunakan sistem plasma non termal tekanan atmosfer dengan metode lucutan korona oleh ionisasi udara, Arena Tekstil, 30 (1), 45-54
Putra, V.G.V., Purnomosari, E., and Ngadiyono, 2019, Pengantar Praktikum Mekatronika Tekstil, CV. Mulia Jaya, Yogyakarta.
Putra, V.G.V. and Wijayono, A., 2019, Suatu studi awal modifikasi sifat pembasahan pada permukaan kain tekstil poliester 100% menggunakan teknologi plasma pijar korona, Prosiding Seminar Nasional Fisika (E-Journal), 8, 15-20.
Rauscher, Perucca, and Buyle, 2010, Plasma Technology for Hyperfunctionals Surfaces, Wiley-VCH, Weinheim.
Shishoo, 2007, Plasma Technology for Textile, Woodhead Publishing, Cambridge.
Temmerman, E. and Leys, C., 2005, Surface modification of cotton yarn with a DC glow discharge in ambient air, Surf. Coat. Technology, 200 (1-4), 686–689.