Artikel penelitian
Vol 15 No 1 (2021): Volume 15, Number 1, 2021
In-situ catalytic pyrolysis of spirulina platensis residue (SPR): Effect of temperature and amount of C12-4 catalyst on product yield
Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan Kampus 4, Jl. Ringroad Selatan, Kragilan, Yogyakarta, Indonesia
Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan Kampus 4, Jl. Ringroad Selatan, Kragilan, Yogyakarta, Indonesia
Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan Kampus 4, Jl. Ringroad Selatan, Kragilan, Yogyakarta, Indonesia
Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan Kampus 4, Jl. Ringroad Selatan, Kragilan, Yogyakarta, Indonesia
Abstrak
Ketergantungan terhadap energi fosil khususnya minyak bumi, saat ini masih tinggi yaitu mencapai 96% dari total konsumsi. Salah satu solusi untuk mengatasi ketergantungan energi fosil adalah dengan mengolah sumber energi yang berasal dari biomassa mikroalga. Penelitian ini bertujuan untuk pirolisis mikroalga dengan penambahan katalis C12-4 (Cr2O3 + Fe2O3 + C + CuO + promotor). Sampel yang digunakan adalah residu Spirulina platensis (SPR). Penelitian ini menggunakan reaktor unggun tetap dengan diameter luar 44 mm, diameter dalam 40 mm, dan tinggi reaktor 600 mm. Spirulina platensis dengan ukuran partikel 100 mesh sebanyak 50 gram dicampur dengan katalis C12-4 dengan variasi 5, 10, dan 15 wt.%. Campuran umpan (in-situ) dimasukkan ke dalam reaktor dan ditutup rapat. Pemanas menggunakan arus listrik melalui kawat nikel yang dililitkan pada dinding reaktor. Laju pemanasan pirolisis rata-rata 24,33 °C/menit, variasi suhu 300, 400, 500, 550, dan 600 °C. Kondisi optimum tanpa dan dengan katalis untuk menghasilkan bio-oil memiliki nilai yang berbeda yaitu pirolisis tanpa katalis (500 ⁰C), dengan katalis 5 wt.% (500 ⁰C), 10 wt.% (400 ⁰C) dan 15 wt.% (550 ⁰C) menghasilkan bio-oil 15,00; 17,92; 16,78; dan 16,54. Penggunaan katalis 5, 10, dan 15 wt.% berat dapat meningkatkan fasa air hasil. Yield char dipengaruhi oleh jumlah katalis hanya pada 300 ⁰C, semakin banyak katalis maka yield char semakin menurun. Pirolisis tanpa katalis menghasilkan produk gas tertinggi. Penggunaan katalis sangat signifikan dalam meningkatkan konversi pirolisis dari 48,69 (tanpa katalis) menjadi 62,46% (katalis 15 wt.%) pada suhu 300 ⁰C. Kondisi optimum untuk menghasilkan minyak nabati terbaik adalah pada 600 °C dengan katalis 10% berat, menghasilkan rasio O/C sebesar 0,14.
Referensi
Aysu, T., Maroto-Valer, M.M., and Sanna, A., 2016, Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis, Bioresour. Technol., 208, 140–148.
Basu, P., 2010, Biomassa gasification and pyrolysis practical design and theory, Elsevier, Oxford, UK, pp. 77-82.
Babich, I.V., Van der Hulst, M., Lefferts, L., Moulijn, J. A., O’Connor, P., and Seshan, K., 2011, Catalytic pyrolysis of microalgae to high-quality liquid biofuels, Biomass Bioenergy, 35(7), 3199–3207.
Badan pengkajian dan Penerapan Teknologi−Outlook Energi Indonesia 2019, BPPT−OEI, Indonesia.
Baimoldina, A., Papadakis, K., and Konysheva, E.Y., 2019, Diverse impact of α-Fe2O3 with nano/micro-sized shapes on the catalytic fast pyrolysis of pinewood: Py-GC/MS study, Analytical, and Applied Pyrolysis, 139, 145–155
Chisti, Y., 2008, Biodiesel from microalgae beats bioethanol, Trends in Biotechnology., 26, 126 - 131.
Guo, F., Li, X., Liu, Y., Peng, K., Guo, C., and Rao, Z., 2018, Catalytic cracking of biomass pyrolysis tar over char-supported catalysts, Energy Convers. and Manage., 167, 81–90.
Hu, M., Laghari, M., Cui, B., Xiao, B., Zhang, B., and Guo, D., 2018, Catalytic cracking of biomass tar over char supported nickel catalyst, Energy, 145, 228-237.
Hu, X., and Gholizadeh, M., 2019, Biomass pyrolysis: A review of the process development and challenges from initial research up to the commercialization stage, J. Energy Chem., 39, 109–143.
Jafarian, S., and Tavasoli, A., 2018. A comparative study on the quality of bioproducts derived from catalytic pyrolysis of green microalgae Spirulina (Arthrospira) platensis over transition metals supported on HMS-ZSM5 composite, Int. J. Hydrogen Energy, 43, 19902-19917.
Jamilatun, S., Budhijanto, Rochmadi, and Budiman, A., 2017, Thermal decomposition and kinetic studies of pyrolysis of Spirulina platensis residue, Int. J. Renewable Energy Dev., 6(3), 193–201.
Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A. and Budiman, A., 2018, Valuable chemicals derived from pyrolysis liquid products of Spirulina platensis residue, Indones. J. Chem.., 19 (3), 703 – 711.
Jamilatun, S., Budiman, A., Anggorowati, H. Yuliestyan, A. Surya Pradana, Y. Budhijanto, and Rochmadi, 2019, Ex-situ catalytic upgrading of Spirulina platensis residue oil using silica-alumina catalyst, International Journal of Renewable Energy Research, 9 (4), 1733−1740.
Kabir, G., and Hameed, B.H., 2017, Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil bio-chemicals, Renewable and Sustainable Energy Rev., 70, 945–967.
Luo, G., and Resende, F.L.P., 2016, In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees, Fuel 166, 367–375.
Maity, J.P., Bundschuh, J., Chen, C-Y., Bhattacharya, P., 2014, Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives: A mini-review, Energy, 78, 104-113.
Material Safety Data Sheet (MSDS), No.7011, 2016, PT. Clariant Kujang Catalyst, Indonesia
Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L. and Fan, Y., 2010, The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils, Bioresour. Technol., 101 (12), 4593–4599.
Suganya, T, Varman, M., Masjuki, H.H., and Renganathan, S., 2016, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach, Renewable Sustainable Energy Rev., 55, 909–941, 2016.
Shafaghat, H., Rezaei, P.S., Ro, D., Jae, J., Kim, B-S., Jung, S-C., Sung, B.H., and Park, Y-K., 2017, In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolizer, J. Ind. Eng. Chem., 54, 447–453.
Tan, Y.L., Abdullah, A.Z., and Hameed, B.H., 2018, Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters, Bioresour. Technol., 264, 198–205.
Tan, Y.L., Abdullah, A.Z., and Hameed, B.H., 2019, Product distribution of the thermal and catalytic fast pyrolysis of Karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst, Fuel, 245, 89–95.
Yu, Z., Dai, M., Huang, M., Fang, S., Xu, J., Lin, Y., and Ma, X., 2018, Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: analytical Py-GC/MS study, Renewable Energy, 125, 465–471.
Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., Ding, Y., and Wang, C., 2019, Pyrolysis of microalgae: A critical review, Fuel Process. Technol., 186, 53–72.
Zabeti, M., Nguyen, T.S., Lefferts, L., Heeres, H.J., and Seshan, K., 2012, In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica-alumina, Bioresour. Technol., 118, 374–381.
Zang, L., Bao, Z., Xia, Z., Lu, Q., and Walters, K.B., 2018, catalytic pyrolysis of biomass polymer wastes, Catalysts, 8, 659, 1-24.