Bacteriocin Activity of Lactic Acid Bacteria Isolated from Rumen Fluid of Thin Tail Sheep

https://doi.org/10.21059/buletinpeternak.v43i3.36837

Okti Widayati(1), Zaenal Bachruddin(2*), Chusnul Hanim(3), Lies Mira Yusiati(4), Nafiatul Umami(5)

(1) Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281
(2) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281
(3) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281
(4) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281
(5) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281
(*) Corresponding Author

Abstract


The objective of this study was to determine the activity and the stability of bacteriocin from lactic acid bacteria (BAL) isolated from rumen fluid of thin-tail sheep under the temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). Lactic acid bacteria obtained by isolation, selection, and identification of thin-tailed sheep rumen fluid were used for bacteriocin production. The crude bacteriocin was partially purified using 70% ammonium sulfate, then was dialysis for 12 hours. The obtained bacteriocin then tested its inhibitory activity against E.coli (representing Gram-negative) and S. aureus (representing Gram-positive) under temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). The data of bacteriocin activity based on pH, temperature, and the length of storage were analyzed with factorial, then when there was a significant difference of variable because treatment was continued with Duncan's Multiple Range Test (DMRT) test. The results showed that the bacteriocin activity of the three types of BAL against S.aureus is greater than E.coli. The highest activity was shown in pH 3, while the lowest activity was shown at pH 10 (P<0.01). The highest activity was shown at a heating temperature of 100°C, while the lowest activity was shown at a heating temperature of 80°C (P<0.01). The activity of bacteriocin produced by BAL 0 A, BAL 1 A, and BAL 4 C tended to be stable to the heating temperature of 80, 100, and 121°C but decreased with increasing pH value (pH 3, 7, and 10). The best of bacteriocin activity was found at pH 3 (acid), heating at 100°C, and stored at -8°C for 14 days.

Keywords


Bacteriocin activity; Escherichia coli; Lactic acid bacteria; Staphylococcus aureus

Full Text:

PDF


References

Abubakar and M. Arpah. 2015. Pengaruh suhu produksi teradap aktivitas ekstrak kasar bakteriosin dari berbagai galur Lactobacillus sp. dalam menghambat Escherichia coli dan Staphylococcus aureus. Buletin Peternakan 39: 189-198.

Avonts, L., E. V. Uytven, and L. De Vuyst. 2004. Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Intl. Dairy J. 14: 947–955.

Caplice, E. and G. F. Fitzgerald. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50: 131–149.

Cleveland, J., J. T. Montville, I. F. Nes, and M. L. Chikinidas. 2001. Bacteriocin safe natural antimicrobials for food preservation. Intl. J. Food Microbiol. 71: 1-20.

De Vuyst, L. and E. J. Vandamme. 1994. Antimicrobial potential of lactic acid bacteria. In: Bacteriocins of Lactic Acid Bacteria. De Vuyst, L. and E. J. Vandamme (ed). Blackie Academic & Professional, Glasgow, pp. 91-142.

De Vuyst, L. and F. Leroy. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J. Molecular Microbiol. Biotechnol. 13: 194-199.

Galvez, A., H. Abriouel, R. L. Lopez, and N. B. Omar. 2007. Bacteriocin-based strategies for food preservation. Int. J. Food Microbiol. 120: 51-70.

Ganzle, M. G., S. Weber, and W. P. Hammes. 1999. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int. J. Food Microbiol. 46: 207-217.

Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of Gram-positive bacteria. Microbiol. Rev. 59: 171-200.

Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie. 70: 337-349.

Kusmarwati, A., F. R. Arief, and S. Haryati. 2014. Eksplorasi bakteriosin dari bakteri asam laktat asal rusip Bangka dan Kalimantan. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan 9: 29-40.

Leroy, F. and L. De Vuyst. 2000. Sakacins. Natural Food Antimicrobial Systems. A. S. Naidu (ed.). CRC Press, London. pp. 589-610.

Mandal, V., S. K. Sen, and N. C. Mandal. 2008. Optimized cultured conditions for bacteriocin production by Pediococcus acidilactici LAB and its characterization. Indian J. Biochem. Biophysics. 45: 106-110.

Messens, W. and L. De Vuyst. 2002. Inhibitory substances produced by Lactobacilli isolated from sourdoughs-a review. Int. J. Food Microbiol. 72: 31-43.

Nugroho, D. A. and E. S. Rahayu. 2003. Extraction and characterization of bacteriocin produced by Leuconostoc mesenteroides SM 22. J. Technol. Food Industry. 14: 214-218.

Obi, C. N. 2015. Preservative potentials of crude bacteriocins produced by Lactobacillus tucceti CECT 5920 and Lactobacillus mindensis TMW on Escherichia coli 0157:H7 and Staphylococcus aureus NCTC 8325. J. Biotechnol. Biochem. 1: 110-120.

Ogunbanwo, S. T., A. I. Sanni, and A. A. Onilude. 2003. Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African J. Biotechnol. 2: 219-227.

Ogunbanwo, S.T. and B.M. Okanlawon. 2006. Microbial and sensory changes during the cold storage of chicken meat treated with bacteriocin from L. brevis OG1. Pakistan Journal of Nutrition. 5: 601-605.

Osmanagaoglu, O., U. Gunduz, Y. Beyatli, and C. Cokmus. 1998. Purification and characterization of Pediocin F.A bacteriocin produced by Pediococcus acidilactici F. Tr. J. Biology. 22: 217-228.

Parker, R. 2003. Introduction to Food Science. Delmar, USA.

Ray, B. 2004. Fundamental Food Microbiology. CRC Press LLC, Florida.

Sankar, N. R., V. D. Priyanka, P. S. Reddy, P. Rajanikanth, V. K. Kumar, and M. Indra. 2012. Purification and characterization of bacteriocin produced by Lactobacillus plantarum isolated from cow milk. Intl. J. Microbiol. Res. 3: 133-137.

Sharma, N., R. Kapoor, N. Gautam, and R. Kumari. 2011. Purification and characterization of bacteriocin produced by Bacillus subtilis R75 isolated from fermented chunks of mung bean (Phaseolus radiatus). Food Technol. Biotechnol. 49: 169-176.

Steel, R. G. D. and J. H. Torrie. 1995. Prinsip dan Prosedur Statistika. PT Gramedia Pustaka, Jakarta.

Stevens, K. A., B. W. Sheldon, N. A. Klapes, and T. R. Klaenhammer. 1991. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl. Environ. Microbiol. 57: 3613-3615.

Stewart, C. S. 1992. Lactic acid bacteria in the rumen. B.J.B. Wood, Elsevier Science Publisher Ltd. Aberdeen, UK.

Sumathi, V. and D. Reetha. 2012. Effect of storage time and temperature for maximum bacteriocin production by lactic acid bacteria. Int. J. Pharm. Biol. Archives. 3: 831-834.

Tahara, T., M. Oshimura, C. Umezawa, and K. Kanatani. 1996. Isolation, partial characterization, and mode of action of acidocin J1132 a two-compound bacteriocin produced by Lactobacillus acidophilus JCM 1132. Appl. Environ. Microbiol. 62: 892-897.

Todorov, S. D. and L. M. T. Dicks. 2006. Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria comparison of the bacteriocins. Process Biochem. 41: 11-19.

Todorov, S. D., H. Prevost, M. Lebois, X. Dousset, J. G. LeBlanc, and B. D. G. M. Franco. 2011. Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya) from isolation to application: characterization of a bacteriocin. J. Food Res. Intl. 44: 1351-1363.

Udhayashree, N., D. Senbagam, and B. Senthilkumar. 2012. Production of bacteriocin and their application in food products. Asian Pacific Journal of Tropical Biomedicine. 2: 406- 410.

Usmiati, S. and T. Marwati. 2007. Selection and optimation of process of bacteriocin production from Lactobacillus sp. J. Post Harvest. 4: 27-37.

Usmiati, S. and E. Noor. 2009. Karakter ekstrak bakteriosin dari bakteri asam laktat galur SCG 1223 selama penyimpanan pada berbagai pH dan suhu pemanasan. Prosiding Simposium Pascapanen Pertanian 14 Agustus 2009. Balai Besar Litbang Pascapanen Pertanian. Pp. 223 – 230.

Usmiati, S. and W. P. Rahayu. 2011. Aktivitas hambat bubuk ekstrak bakteriosin dari Lactobacillus sp. galur SCG 12223. Seminar Nasional Teknologi Peternakan dan Veteriner. Pp. 388-397.



DOI: https://doi.org/10.21059/buletinpeternak.v43i3.36837

Article Metrics

Abstract views : 2001 | views : 2080

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.