Purification and characterization of thermostable alpha‐amylase from Geobacillus sp. DS3 from Sikidang Crater, Central Java, Indonesia
Dea Rizki Widiana(1), Sotharith Phon(2), Andriati Ningrum(3), Lucia Dhiantika Witasari(4*)
(1) Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Gadjah Mada University, St. Flora No. 1, Yogyakarta, 55281, Indonesia
(2) Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Gadjah Mada University, St. Flora No. 1, Yogyakarta, 55281, Indonesia
(3) Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Gadjah Mada University, St. Flora No. 1, Yogyakarta, 55281, Indonesia
(4) Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Gadjah Mada University, St. Flora No. 1, Yogyakarta, 55281, Indonesia
(*) Corresponding Author
Abstract
Amylases are considered the most essential enzymes in biotechnology since they are widely utilized in the textile, food processing, and detergent industries. It is necessary to explore extracellular enzymatic activity in several microorganisms to discover a new potential application from amylases. In a previous study, thermophilic bacteria Geobacillus sp. DS3 isolated from Sikidang Crater, Dieng Plateau, Central Java, Indonesia showed amylase activity in starch medium at 70 °C. This study aimed to purify and characterize the thermostable alpha‐amylase from Geobacillus sp. DS3. The alpha‐amylase was produced and purified using ammonium sulfate and DEAE Sephadex A‐25 column. The enzyme activity was determined using the 3,5‐dinitrosalicylic acid (DNS) method. Geobacillus sp. DS3 optimally produced the alpha‐amylase at 60 °C for 15 h. The alpha‐amylase exhibited high enzymatic activity in 40–60% saturated ammonium sulfate extract. The molecular weight of the enzyme was estimated to be 58 kDa. The thermostable alpha‐amylase showed activity at the optimum temperature of 50 °C in 200 mM sodium phosphate buffer pH 7.0. The enzyme was inhibited by EDTA, PMSF, 2‐ME, and mostly by HgCl2. The Km and Vmax of the pure enzyme were 235.43 mM and 1428.57 U/mL, respectively. The result suggested that the purified thermostable alpha‐amylase from Geobacillus sp. DS3 offers potential application in areas of the food industry, such as the bakery industry.
Keywords
References
Agüloǧlu Fincan S, Enez B, Özdemir S, Matpan Bekler F. 2014. Purification and characterization of thermostable αamylase from thermophilic Anoxybacillus flavithermus. Carbohydr. Polym. 102(1):144–150. doi:10.1016/j.carbpol.2013.10.048.
Allala F, Bouacem K, Boucherba N, Azzouz Z, Mechri S, Sahnoun M, Benallaoua S, Hacene H, Jaouadi B, BouananeDarenfed A. 2019. Purification, biochemical, and molecular characterization of a novel extracellular thermostable and alkaline αamylase from Tepidimonas fonticaldi strain HB23. Int. J. Biol. Macromol. 132:558–574. doi:10.1016/j.ijbiomac.2019.03.201.
Bhatt K, Lal S, Srinivasan R, Joshi B. 2020. Molecular analysis of Bacillus velezensis KB 2216, purification and biochemical characterization of alphaamylase. Int. J. Biol. Macromol. 164:3332–3339. doi:10.1016/j.ijbiomac.2020.08.205.
Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72(1–2):248–254. doi:10.1006/abio.1976.9999.
Buonocore V, Poerio E, Silano V, Tomasi M. 1976. Physical and catalytic properties of αamylase from Tenebrio molitor L. larvae. Biochem. J. 153(3):621–625. doi:10.1042/bj1530621.
Burhan A, Nisa U, Gökhan C, Ömer C, Ashabil A, Osman G. 2003. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT6. Process Biochem. 38(10):1397–1403. doi:10.1016/S00329592(03)000372.
Burhanoǧlu T, Sürmeli Y, ŞanlıMohammed G. 2020. Identification and characterization of novel thermostable αamylase from Geobacillus sp. GS33. Int. J. Biol. Macromol. 164:578–585. doi:10.1016/j.ijbiomac.2020.07.171.
Cahyono LB. 2020. Ekspresi enzim alfa amilase termostabil dari Brevibacillus sp. dengan sel inang Escherichia coli BL21(DE3). Yogyakarta: Universitas Gadjah Mada.
Du R, Song Q, Zhang Q, Zhao F, Kim RC, Zhou Z, Han Y. 2018. Purification and characterization of novel thermostable and Caindependent αamylase produced by Bacillus amyloliquefaciens BH072. Int. J. Biol. Macromol. 115:1151–1156. doi:10.1016/j.ijbiomac.2018.05.004.
ElOkki AAKEH, Gagaoua M, Bourekoua H, Hafid K, Bennamoun L, DjekrifDakhmouche S, ElOkki MEH, Meraihi Z. 2017. Improving bread quality with the application of a newly purified thermostable α amylase from Rhizopus oryzae fsis4. Foods 6(1):1. doi:10.3390/foods6010001.
Febriani, Rayyana, Ulya M, Oesman F, Akhmaloka, Iqbalsyah TM. 2019. Low molecular weight alkaline thermostable αamylase from Geobacillus sp. nov. Heliyon 5(7):E02171. doi:10.1016/j.heliyon.2019.e02171.
Fincan SA, Özdemir S, Karakaya A, Enez B, Mustafov SD, Ulutaş MS, Şen F. 2021. Purification and characterization of thermostable αamylase produced from Bacillus licheniformis SoB3 and its potential in hydrolyzing raw starch. Life Sci. 264:118639. doi:10.1016/j.lfs.2020.118639.
Gazali FM, Suwastika IN. 2018. Thermostable α amylase activity from thermophilic bacteria isolated from Bora Hot Spring, Central Sulawesi. J. Phys. Conf. Ser. 979(1):012001. doi:10.1088/1742 6596/979/1/012001.
Kambourova M. 2018. Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Eng. Life Sci. 18(11):758–767. doi:10.1002/elsc.201800022.
Kizhakedathil MPJ, C SD. 2021. Acid stable αamylase from Pseudomonas balearica VITPS19—Production, purification and characterization. Biotechnol. Reports 30:e00603. doi:10.1016/j.btre.2021.e00603.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. doi:10.1038/227680a0.
Mathew CD, Rathnayake S. 2014. Isolation and characterization of alpha amylase isolated from a hot water spring in Sri Lanka. Int. Res. J. Microbiol. 5(4):50– 61. doi:10.14303/irjm.2014.021.
Mehta D, Satyanarayana T. 2016. Bacterial and archaeal αamylases: Diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol. 7:1–21. doi:10.3389/fmicb.2016.01129.
MontorAntonio JJ, HernándezHeredia S, Ávila Fernández, Olvera C, SachmanRuiz B, del Moral S. 2017. Effect of differential processing of the native and recombinant αamylase from Bacillus amyloliquefaciens JJC33M on specificity and enzyme properties. 3 Biotech 7(5):336. doi:10.1007/s1320501709548.
Msarah MJ, Ibrahim I, Hamid AA, Aqma WS. 2020. Optimisation and production of alpha amylase from thermophilic Bacillus spp. and its application in food waste biodegradation. Heliyon 6(6):E04183,. doi:10.1016/j.heliyon.2020.e04183.
Nam KH, Kim SJ, Priyadarshi A, Kim HS, Hwang KY. 2009. The crystal structure of an HSLhomolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads. Biochem. Biophys. Res. Commun. 389(2):247–250. doi:10.1016/j.bbrc.2009.08.123.
Phon S, Witasari LD, Ningrum A. 2022. Purification and characterization of thermostable serine alkaline protease from Geobacillus sp. DS3 isolated from Sikidang crater, Dieng plateau, Central Java, Indonesia. Indones. J. Biotechnol. 27(2):73–79. doi:10.22146/ijbiotech.65822.
Priyadarshini S, Pradhan SK, Ray P. 2020. Production, characterization and application of thermostable, alkaline αamylase (AA11) from Bacillus cereus strain SPCH11 isolated from Chilika Lake. Int. J. Biol. Macromol. 145:804–812. doi:10.1016/j.ijbiomac.2019.11.149.
Ravindran R, Williams GA, Jaiswal AK. 2019. Evaluation of brewer’s spent grain hydrolysate as a substrate for production of thermostable αamylase by Bacillus stearothermophilus. Bioresour. Technol. Reports 5:141–149. doi:10.1016/j.biteb.2019.01.004.
Robinson PK. 2015. Enzymes: principles and biotechnological applications. Essays Biochem. 59:1–41. doi:10.1042/BSE0590001.
Saad WF, Othman AM, AbdelFattah M, Ahmad MS. 2021. Response surface methodology as an approach for optimization of αamylase production by the new isolated thermotolerant Bacillus licheniformis WF67 strain in submerged fermentation. Biocatal. Agric. Biotechnol. 32:101944. doi:10.1016/j.bcab.2021.101944.
Simair AA, Khushk I, Qureshi AS, Bhutto MA, Chaudhry HA, Ansari KA, Lu C. 2017. Amylase production from thermophilic Bacillus sp. BCC 02150 isolated from a marine environment. Fermentation 3(2):25. doi:10.3390/fermentation3020025.
Tallapragada P, Dikshit R, Jadhav A, Sarah U. 2017. Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J. Genet. Eng. Biotechnol. 15(1):95–101. doi:10.1016/j.jgeb.2017.02.003.
Timilsina PM, Pandey GR, Shrestha A, Ojha M, Karki TB. 2020. Purification and characterization of a noble thermostable algal starch liquefying alphaamylase from Aeribacillus pallidus BTPS2 isolated from geothermal spring of Nepal. Biotechnol. Reports 28:e00551. doi:10.1016/j.btre.2020.e00551.
Turner P, Mamo G, Karlsson EN. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6(9):e00551. doi:10.1186/1475285969.
Vieille C, Zeikus GJ. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65(1):1–43. doi:10.1128/mmbr.65.1.143.2001.
Wang YC, Zhao N, wen Ma J, Liu J, juan Yan Q, qiang Jiang Z. 2019. Highlevel expression of a novel αamylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int. J. Biol. Macromol. 127:683–692. doi:10.1016/j.ijbiomac.2019.01.162.
Witasari LD, Prijambada ID, Widada J, Wibawa DAA. 2010. Cloning of thermostable DNA polymerase gene from a thermophilic Brevibacillus sp. isolated from Sikidang Crater, Dieng Plateu, Central Java. Indones. J. Biotechnol. 15(2):72–78. doi:10.22146/ijbiotech.7825.
Xie F, Quan S, Liu D, Ma H, Li F, Zhou F, Chen G. 2014. Purification and characterization of a novel α amylase from a newly isolated Bacillus methylotrophicus strain P112. Process Biochem. 49(1):47–53. doi:10.1016/j.procbio.2013.09.025.
Zamost BL, Nielsen HK, Starnes RL. 1991. Thermostable enzymes for industrial applications. J. Ind. Microbiol. 8(2):71–81. doi:10.1007/BF01578757.
DOI: https://doi.org/10.22146/ijbiotech.71643
Article Metrics
Abstract views : 2462 | views : 1636 | views : 595Refbacks
- There are currently no refbacks.
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.