Morphology and molecular characterization of Vanda tricolor × Vanda limbata orchid hybrid based on VOH1 gene characters

https://doi.org/10.22146/ijbiotech.91456

Hafshah Alydarafa(1), Chrisnanda Ayu Melati(2), Endang Semiarti(3*)

(1) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Yogyakarta, 55281, Indonesia
(2) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Yogyakarta, 55281, Indonesia
(3) Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Yogyakarta, 55281, Indonesia
(*) Corresponding Author

Abstract


Vanda is a monopodial epiphyte orchid that spreads throughout Asia and Southeast Asia reaching 70 species. Indonesia itself has its own endemic Vanda orchid such as Vanda tricolor and Vanda limbata. A hybrid of V. tricolor and V. limbata is predicted to form a new specific character in the flower and leaf. The purpose of this study was to determine the morphological and molecular differences between V. tricolor, V. limbata, and Vanda hybrids resulting from crosses between that two orchids, by analysing the morphological characteristics of the roots, leaves, flowers and the structure of the Vanda Orchid Homeobox1 (VOH1) shoot‐forming gene isolated from V. tricolor, V. limbata, and their hybrids. The morphological analysis was conducted using RHS colour chart, size measurement of plants, and the transversal preparation of the leaf. Molecular analysis was performed by PCR using Dendrobium Orchid Homeobox 1 (DOH1) primers, followed by sequencing and bioinformatic analysis. Morphologically, the flower’s colour of the hybrid is most similar to V. limbata but the flower’s patterns are more similar to V. tricolor meanwhile the leaf colour of the hybrid is brighter than the both parents. The slides illustrate the sclerenchyma tissue is made up of strongly thickened walls containing lignin indicates the presence of homeobox DOH1 gene homolog, namely VOH1. The molecular result displayed by the phylogenetic tree of the VOH1 indicates that the hybrid has more similarities with V. limbata.


Keywords


Vanda hybrid; Vanda limbata; Vanda tricolor; VOH1 gene

Full Text:

PDF


References

Andrade­Rodriguez M, Rodriguez ­Rojas T, CastilloGutiérrez A, Villegas­Torres O, Guillén­Sánchez D. 2019. Analysis of morphological characters and RAPDs fragments of twelve species of the Crassulaceae Family. Rev. Bio Ciencias 6:e537.

Carrillo­López A, Yahia EM. 2019. Chapter 6 ­ Morphology and anatomy. Swaston: Woodhead Publishing. Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, van den Berg C, Schuiteman A. 2015. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177(2):151–174. doi:10.1111/boj.12234.

Doyle JJ. 1990. Isolation of plant DNA from fresh tissue. Focus (Madison). 12:13–15.

Dwiyanto W, Soelistijono R, Utami DSU. 2017. Characterization isolate the morphology and anatomy of orchid mycorrhizal rizoctonia Vanda limbata. AGRINEÇA 17(1):1–11.

Hartati S, Samanhudi, Manurung IR, Cahyono O. 2021. Morphological characteristics of Phaius spp. orchids from Indonesia. Biodiversitas 22(4):1991–1995. doi:10.13057/biodiv/d220447.

Indraloka AB, Dewanti P, Restanto DP. 2019. Morphological characteristics and pollinia observation of 10 Indonesia native Dendrobium orchids. BIOVALENTIA Biol. Res. J. 5(2):38–5. doi:10.24233/biov.5.2.2019.140.

Iroka C, Okeke C, Izundu A, Okereke N, Nyanayo B. 2015. Taxonomic significance of morphological characters in the species of Stachytarpheta found in Awka, Nigeria. Int. J. Plant Soil Sci. 8(3):1–6. doi:10.9734/ijpss/2015/19409.

Kusumastianto AP, Wibowo ARU, Anggriasari AM, Meylia FS, Susila H, Atmaja MB, Soesilohadi RH. 2015. Diversity of Vanda tricolor Lindl. (Orchidaceae) flower­visiting insects in the Turgo Hill of Mount Merapi National Park, Yogyakarta, Indonesia. KnE Life Sci. 2:533–539. doi:10.18502/kls.v2i1.211.

Li C, Dong N, Zhao Y, Wu S, Liu Z, Zhai J. 2021. A review for the breeding of orchids: Current achievements and prospects. Hortic. Plant J. 7(5):380–392. doi:10.1016/j.hpj.2021.02.006.

Li X, Li Y, Zhang Z, Li X. 2015. Influences of environmental factors on leaf morphology of Chinese jujubes. PLoS One 10(5):e0127825. doi:10.1371/journal.pone.0127825.

Liu GQ, Lian L, Wang W. 2022. The molecular phylogeny of land plants: Progress and future prospects. Diversity 14(10):782. doi:10.3390/d14100782.

Mellissa AO. 2019. Efek Pupuk Organik Cair Terhadap Pertumbuhan dan Perkembangan Daun Planlet Anggrek (Vanda limbata x Vanda tricolor) in­vitro [Effect of Liquid Organic Fertilizer on the Growth and Development of Orchid Plantlet Leaves (Vanda limbata x Vanda tricolor) in vitro]. J. Biol. Educ. 2(1):93–101.

Metusala D. 2011. Keragaman Vanda sp. (Orchidaceae) di Kepulauan Sunda Kecil ­ Indonesia [Diversity of Vanda sp. (Orchidaceae) in the Lesser Sunda Islands ­ Indonesia]. Berk. Penel. Hayati Edisi Khusus 5A:29– 33.

Rineksane IA, Alifianindya ND, Samidjo GS. 2021. Utilization of shoot multiplication medium for in vitro conservation of Vanda tricolor. In: IOP Conf. Ser. Earth Environ. Sci., volume 985. p. 012009. doi:10.1088/1755­1315/985/1/012009.

Risdiana SF, Azharia SA, Supriyatna A. 2023. Inventarisasi dan analisis jenis anggrek (Orchidaceae) di Kampung Nambo, Desa Batukarut, Kecamatan Arjasari, Kabupaten Bandung [Inventory and analysis of orchid types (Orchidaceae) in Nambo Village, Batukarut Village, Arjasari District, Bandung Regency]. J. Ilmu Pertan. dan Perkeb. 5(2):41–50. doi:10.55542/jipp.v5i2.713.

Ruben V, Lawrie MD, Semiarti E. 2022. Isolation and characterization of Vanda orchid homeobox gene from Vanda tricolor var. Suavis Lindl. form Merapi. In: Proc. 7th Int. Conf. Biol. Sci. (ICBS 2021), volume 22. p. 255–260. doi:10.2991/absr.k.220406.036.

Ruzen SE. 1951. Plant microtecnique and microscopy. New York: Oxford University Press.

Semiarti E, Perdana NGA, Rozikin R, Kurniawan FY. 2020. In vitro culture and characterization of the HSP70 gene on Vanda tricolor Lindley var. Suavis ’Queen Maxima’. In: BIO Web Conf., volume 28. p. 03004. doi:10.1051/bioconf/20202803004.

Townsley BT, Sinha NR, Kang J. 2013. KNOX1 genes regulate lignin deposition and composition in monocots and dicot. Front. Plant Sci. 4(121):1–11. doi:10.3389/fpls.2013.00121.

Tuwo M, Indrianto A. 2016. Improvement of orchid Vanda hybrid (Vanda limbata Blume × Vanda tricolor Lindl. var. suavis) by colchicines treatment in vitro. Mod. Appl. Sci. 10(11):83–89. doi:10.5539/mas.v10n11p83.

Wang Y, Strauss S, Liu S, Pieper B, Lymbouridou R, Runions A, Tsiantis M. 2022. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity. Curr. Biol. 32(17):3773– 3784.e5. doi:10.1016/j.cub.2022.08.020.

Weyenberg G, Yoshida R. 2016. Phylogenetic tree distances. Amsterdam Boston Heidelberg Elsevier: Academic Press.

Yu H, Shu Hua Yang, Chong Jin Goh. 2000. DOH1, a class 1 KNOX gene, is required for maintenance of the basic plant architecture and floral transition in orchid. Plant Cell 12(11):2143–2159. doi:10.1105/tpc.12.11.2143.

Zhang S, Yang Y, Li J, Qin J, Zhang W, Huang W, Hu H. 2018. Physiological diversity of orchids. Plant Divers. 40(4):196–208. doi:10.1016/j.pld.2018.06.003.



DOI: https://doi.org/10.22146/ijbiotech.91456

Article Metrics

Abstract views : 234 | views : 131

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.