Lineament Extraction using Gravity Data in the Citarum Watershed
Gumilar Utamas Nugraha(1*), Karit Lumban Goal(2), Lina Handayani(3), Rachmat Fajar Lubis(4)
(1) Research Center For Geotechnology, Indonesian Institute of Sciences , Indonesia
(2) Research Center For Geotechnology, Indonesian Institute of Sciences , Indonesia
(3) Research Center For Geotechnology, Indonesian Institute of Sciences , Indonesia
(4) Research Center For Geotechnology, Indonesian Institute of Sciences , Indonesia
(*) Corresponding Author
Abstract
Lineament is one of the most important features showing subsurface elements or structural weakness such as faults. This study aims to identify subsurface lineament patterns using automatic lineament in Citarum watershed with gravity data. Satellite gravity data were used to generate a sub-surface lineament. Satellite gravity data corrected using Bouguer and terrain correction to obtain a complete Bouguer anomaly value. Butterworth filters were used to separate regional and residual anomaly from the complete Bouguer anomaly value. Residual anomaly gravity data used to analyze sub-surface lineament. Lineament generated using Line module in PCI Geomatica to obtain sub-surface lineament from gravity residual value. The orientations of lineaments and fault lines were created by using rose diagrams. The main trends observed in the lineament map could be recognized in these diagrams, showing a strongly major trend in NW-SE, and the subdominant directions were in N-S. Area with a high density of lineament located at the Southern part of the study area. High-density lineament might be correlated with fractured volcanic rock upstream of the Citarum watershed, meanwhile, low-density lineament is associated with low-density sediment. The high-density fracture might be associated with intensive tectonics and volcanism.
Keywords
Full Text:
PDFReferences
Abdelrahman, E.M., Essa, K.S., (2015a). A new method for depth and shape determinations from magnetic data. Pure Appl. Geophys. 172, 439–460.
Abdelrahman, E.M., Essa, K.S., (2015b). Three least-squares minimization approaches to interpret gravity data due to dipping faults. Pure Appl. Geophys. 172, 427–438.
Abdelrahman, E.M., Saber, H.S., Essa, K.S., Fouda, M.A., (2004). A least-squares approach to depth determination from numerical horizontal self-potential gradients. Pure Appl. Geophys. 161, 399–411.
Abo-Ezz, E.R., Essa, K.S., (2016). A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure Appl. Geophys. 173, 1265–1278.
Agaton, M., Setiawan, Y., & Effendi, H. (2016). Land Use/Land Cover Change Detection in an Urban Watershed: A Case Study of Upper Citarum Watershed, West Java Province, Indonesia. Procedia Environmental Sciences, 33, 654–660. https://doi.org/10.1016/j.proenv.2016.03.120.
Álvarez, O., Gimenez, M., Folguera, A., Chaves, C. A. M., & Braitenberg, C. (2019). Reviewing megathrust slip behavior for recent Mw > 8.0 earthquakes along the Peru-Chilean margin from satellite GOCE gravity field derivatives. Tectonophysics, 769(August), 228188. https://doi.org/10.1016/j.tecto.2019.228188.
Araffa, S. A. S., Sabet, H. S., & Gaweish, W. R. (2015). Integrated geophysical interpretation for delineating the structural elements and groundwater aquifers at central part of Sinai Peninsula, Egypt. Journal of African Earth Sciences, 105, 93–106. https://doi.org/10.1016/j.jafrearsci.2015.02.011.
Bansal, A. R., Fairhead, J. D., Green, C. M., & Fletcher, K. M. U. (2005). Revised gravity for offshore India and the isostatic compensation of submarine features. Tectonophysics, 404(1–2), 1–22. https://doi.org/10.1016/j.tecto.2005.03.017.
Biswas, A., 2017. A review on modeling, inversion and interpretation of self-potential in mineral exploration and tracing paleo-shear zones. Ore Geol. Rev. 91, 21–56.
Briggs, I., (1974). Machine contouring using minimum curvature. Geophysics 39 (1), 39–48. Camacho, A.G., Vieira, R., Montesinos, F.G., Cuéllar, V., 1994. A gravimetric 3D Global inversion for cavity detection. Geophys. Prospect. 42 (2), 113–130.
Chambers, D. P. (2015). Gravimetric Methods - Satellite Altimeter Measurements. In Treatise on Geophysics: Second Edition (Vol. 3). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53802-4.00063-4.
Chen, J., Li, J., Zhang, Z., & Ni, S. (2014). Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116, 130–138. https://doi.org/10.1016/j.gloplacha.2014.02.007.
Debeglia, N., Martelet, G., Perrin, J., Truffert, C., Ledru, P., Tourlie, B., aug 2006. Semiautomated structural analysis of high resolution magnetic and gamma-ray spectrometry airborne surveys. J. Appl. Geophys. 58 (1), 13–28. http://linkinghub.elsevier. com/retrieve/pii/S0926985105000273.
Deng, Yangfan, Chen, Yun, Wang, Peng, Essa, Khalid S., Xub, Tao, Liang, Xiaofeng, Badal, José, (2016). Magmatic underplating beneath the Emeishan large igneous province (South China) revealed by the COMGRA-ELIP experiment. Tectonophysics 672–673, 16–23.
Djuangsih, N. (1993). Understanding the state of river basin management from an environmental toxicology perspective: an example from water pollution at Citarum river basin, West Java, Indonesia. Science of the Total Environment, 134(SUPPL. 1), 283–292. https://doi.org/10.1016/S0048-9697(05)80029-4.
Ellis, G., (2012). Control System Design Guide: Using Your Computer to Understand and Diagnose Feedback Controllers (4th edition). Elsevier.
Essa, K.S., 2007. A simple formula for shape and depth determination from residual gravity anomalies. Acta Geophys. 55, 182–190.
Essa, K.S., (2011). A new algorithm for gravity or self-potential data interpretation. J. Geophys. Eng. 8, 434–446.
Essa, K.S., (2014). New fast least-squares algorithm for estimating the best-fitting parameters of some geometric-structures to measured gravity anomalies. J. Adv. Res. 5, 57–65.
Essa, K.S., Elhussein, M., (2017). A new approach for the interpretation of magnetic data by a 2-D dipping dike. J. Appl. Geophys. 136, 431–443.
Essa, K.S., Elhussein, M., (2018). PSO (particle swarm optimization) for interpretation of magnetic anomalies caused by simple geometrical structures. Pure Appl. Geophys. https://doi.org/10.1007/s00024-018-1867-0.
Essa, K.S., Mehanee, S., Smith, P., (2008). A new inversion algorithm for estimating the best fitting parameters of some geometrically simple body from measured self-potential anomalies. Explor. Geophys. 39, 155–163.
Essa, K.S., Nady, A.G., Elhussein, M., (2015). Recognition of mega structures of Sinai Peninsula using potential field data. EGS J. 13, 45–56.
Fallatah, O. A., Ahmed, M., Cardace, D., Boving, T., & Akanda, A. S. (2019). Assessment of modern recharge to arid region aquifers using an integrated geophysical, geochemical, and remote sensing approach. Journal of Hydrology, 569(March 2018), 600–611. https://doi.org/10.1016/j.jhydrol.2018.09.061.
Francés, A. P., Lubczynski, M. W., Roy, J., Santos, F. A. M., & Mahmoudzadeh Ardekani, M. R. (2014). Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain). Journal of Applied Geophysics, 110, 63–81. https://doi.org/10.1016/j.jappgeo.2014.08.015.
Gabtni, H., Hajjia, O., Jalloulibc, C., 2016. Integrated application of gravity and seismic methods for determining the dip angle of a fault plane: case of Mahjouba fault(Central Tunisian Atlas Province, North Africa). J. Afr. Earth Sci. 119, 160–170.
Harashina, K., Takeuchi, K., Tsunekawa, A., & Arifin, H. S. (2003). Nitrogen flows due to human activities in the Cianjur-Cisokan watershed area in the middle Citarum drainage basin, West Java, Indonesia: A case study at hamlet scale. Agriculture, Ecosystems and Environment, 100(1–3), 75–90. https://doi.org/10.1016/S0167-8809(03)00173-7.
Haryono, E., Widartono, B. S., Lukito, H., & Kusumayuda, S. B. (2016). A comparison of lineament and fracture trace extraction from LANDSAT ETM panchromatic band and panchromatic aerial photograph in Gunungsewu karst area, Java-Indonesia. IOP Conference Series: Earth and Environmental Science, 47, 12026. https://doi.org/10.1088/1755-1315/47/1/012026
Heiskanen, W.A., Moritz, H., (1967). Physical Geodesy. W.H. Freeman, San Francisco.
Herawati, T., Yustiati, A., Nurhayati, A., & Natadia, S. S. (2016). Domestication of Marble Goby [Oxyeleotris Marmorata (Bleeker, 1852)] Indogenous Fish of Citarum River, Indonesia. Aquatic Procedia, 7, 247–253. https://doi.org/10.1016/j.aqpro.2016.07.035.
Holzrichter, N., & Ebbing, J. (2016). A regional background model for the Arabian Peninsula from modeling satellite gravity gradients and their invariants. Tectonophysics, 692, 86–94. https://doi.org/10.1016/j.tecto.2016.06.002.
Hung, Q. L., Batelaan, O., & Smedt, F. D. (2005). Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam,” Remote Sensing for Environmental Monitoring, GIS Applications, and Geology.
Ibrahim, U., & Mutua, F. (2012). Lineament Extraction using Landsat 8 (OLI) in Gedo, Somalia. International Journal os Science and Research (IJSR):Vol.3:pp 291-296.
James, J.M., Moore, J.M., (1985). Multi-seasonal imagery studies for geological mapping and prospecting in cultivated terrain of S.W. England. In: Fourth Thematic Conference: ”Remote Sensing for Exploration Geology”, San Francisco, California, April 1-4, 1985. April 1 - 4, 1985. San Francisco, California, pp. 475–484.
Juwana, I., Muttil, N., & Perera, B. J. C. (2016a). Application of west Java water sustainability index to three water catchments in west Java, Indonesia. Ecological Indicators, 70, 401–408. https://doi.org/10.1016/j.ecolind.2016.06.017.
Juwana, I., Muttil, N., & Perera, B. J. C. (2016b). Uncertainty and sensitivity analysis of West Java Water Sustainability Index - A case study on Citarum catchment in Indonesia. Ecological Indicators, 61, 170–178. https://doi.org/10.1016/j.ecolind.2015.08.034.
Khazri, D., Gabtni, H., (2018). Geophysical methods integration for deep aquifer reservoir characterization and modeling (Sidi Bouzid basin, central Tunisia). J. Afr. Earth Sci. 138, 289–308.
Kresic, N., (1995). Remote sensing of tectonic fabric controlling groundwater flow in Dinaric karst. Remote Sens. Environ. 53 (2), 85–90.
Kurniawan, F. A. (2012). Pemanfaatan Data Anomali Gravitasi Citra GEOSAT dan ERS-1 Satellite untuk Memodelkan Struktur Geologi Cekungan Bentarsari Brebes. 2(2).
Lahti, I., Nykänen, V., Niiranen, T., (2014). Gravity worms in the exploration of epigenetic gold deposits: new insights into the propectivity of the Central Lapland Greenstone Belt, Northern Finland. In: Niiranen, T., Lahti, I., Nykänen, V., Karinen, T. (Eds.), Central Lapland Greenstone Belt 3D Modelling Project Final Report. Geological Survey of Finland, pp. 8–17 Ch. Chapter 1.
Mallast, U., Gloaguen, R., Geyer, S., Rödiger, T., Siebert, C., (2011). Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrol. Earth Syst. Sci. 15 (8), 2665–2678.
Mansour, K., Omar, K., Ali, K., & Abdel Zaher, M. (2018). Geophysical characterization of the role of fault and fracture systems for recharging groundwater aquifers from surface water of Lake Nasser. NRIAG Journal of Astronomy and Geophysics, 7(1), 99–106. https://doi.org/10.1016/j.nrjag.2018.02.001.
Martín, A., Núñez, M. A., Gili, J. A., & Anquela, A. B. (2011). A comparison of robust polynomial fi tting , global geopotential model and spectral analysis for regional – residual gravity fi eld separation in the Doñana National Park ( Spain ). Journal of Applied Geophysics, 75(2), 327–337. https://doi.org/10.1016/j.jappgeo.2011.06.037.
Martínez-moreno, F. J., Galindo-zaldívar, J., Pedrera, A., Teixidó, T., Peña, J. A., & González-castillo, L. (2015). Regional and residual anomaly separation in microgravity maps for cave detection : The case study of Gruta de las Maravillas ( SW Spain ). Journal of Applied Geophysics, 114, 1–11. https://doi.org/10.1016/j.jappgeo.2015.01.001.
Masoud, A., Koike, K., (2006). Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J. Afr. Earth Sci. 45 (4–5), 467–477.
Masoud, A., Koike, K., (2017). Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Comput.Geosci. 106, 89–100.
Mehanee, S., Essa, K.S., (2015). A 2.5D regularized inversion scheme for the interpretation of residual gravity data by a dipping thin-sheet like target: numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth, Planets and Space 67, 130.
Mehanee, S., Essa, K.S., Smith, P., (2011). A rapid technique for estimating the depth and width of a two-dimensional plate from self-potential data. J. Geophys. Eng. 8, 447–456.
Mehanee, S., Zhdanov, M., (2002). Two-dimensional magnetotelluric inversion of blocky geoelectrical structures. J. Geophys. Res. Solid Earth 107 (B4) pp. EPM 2-1–EPM 2–11.
Mehanee, S.A., (2014). Accurate and efficient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure Appl. Geophys. 171 (8), 1897–1937.
Mehanee, S.A., (2015). Tracing of paleo-shear zones using self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes. Earth Planets Space 67, 14–47.
Mickus, K., Aiken, C., Kennedy, W., (1991). Regional–residual gravity anomaly separation using the minimum-curvature technique. Geophysics 56 (2), 279–283.
Middleton, M., Schnur, T., Sorjonen-Ward, P., Hyvönen, E., (2015). Geological lineament interpretation using the Object-Based Image Analysis approach: results of semi-automated analyses versus visual interpretation. Geol. Surv. Finland, Special Paper 57, 135–154.
Mohamed, A. (2019). Hydro-geophysical study of the groundwater storage variations over the Libyan area and its connection to the Dakhla basin in Egypt. Journal of African Earth Sciences, 157(December 2018), 103508. https://doi.org/10.1016/j.jafrearsci.2019.05.016.
Moore, J.M., Camm, S., (1982). Interactive enhancement of Landsat Imagery for structural mapping in tin-tungsten prospecting: a case history of the S.W. England Orefield (U.K.). In: International Symposium on Remote Sensing of Environment, Second.
Mukherjee, A., & Ramachandran, P. (2018). Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India : Analysis of comparative performances of SVR, ANN and LRM. Journal of Hydrology, 558(August 2002), 647–658. https://doi.org/10.1016/j.jhydrol.2018.02.005.
Nastiti, K. D., Kim, Y., Jung, K., & An, H. (2015). The application of Rainfall-Runoff-Inundation (RRI) model for inundation case in upper Citarum Watershed, West Java-Indonesia. Procedia Engineering, 125, 166–172. https://doi.org/10.1016/j.proeng.2015.11.024.
Ni, C., Zhang, S., Liu, C., Yan, Y., Li, Y., (2016). Lineament length and density analyses based on the segment tracing algorithm: a case study of the gaosong field in gejiu tin mine, China. Math. Probl Eng. 2016, 1–7. https://www.hindawi.com/journals/mpe/ 2016/5392453/.
Noréus, J. P., Nyborg, M. R., & Hayling, K. L. (1997). The gravity anomaly field in the Gulf of Bothnia spatially characterized from satellite altimetry and in situ measurements. Journal of Applied Geophysics, 37(2), 67–84. https://doi.org/10.1016/S0926-9851(97)00007-4.
Nur, A. A., Nugraha, G. U., & Pranantya, P. A. (2017). Interpretation of Groundwater Potential Zones Based on Lineament Pattern Data Analysis in Ambon Island , Moluccas Province , Indonesia. 12(17), 6941–6945.
O'Leary, D., Friedman, J., Pohn, H., (1976). Lineament, linear, lineation: some proposed new standards for old terms. Geol. Soc. Am. Bull. 87 (10), 1463–1469.
Paananen, M., (2013). Completed lineament interpretation of the olkiluoto region. Tech. Rep. October. Geol. Surv. Finland 1–112.
Paolo, F. S., & Molina, E. C. (2010). Integrated marine gravity field in the Brazilian coast from altimeter-derived sea surface gradient and shipborne gravity. Journal of Geodynamics, 50(5), 347–354. https://doi.org/10.1016/j.jog.2010.04.003.
Parikesit, Takeuchi, K., Tsunekawa, A., & Abdoellah, O. S. (2001). Non-forest fuelwood acquisition and transition in type of energy for domestic uses in the changing agricultural landscape of the Upper Citarum Watershed, Indonesia. Agriculture, Ecosystems and Environment, 84(3), 245–258. https://doi.org/10.1016/S0167-8809(00)00243-7.
Peña, S.A., Abdelsalam, M.G., 2006. Orbital remote sensing for geological mapping in southern Tunisia: implication for oil and gas exploration. J. Afr. Earth Sci. 44 (2), 203–219. Segment Tracing Algorithm (STA). Comput. Geosci. 21 (9), 1091–1104.
Publishers, E. S., & Kingdom, U. (1991). Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system. Tectonophysics, 187, 191–203.
Richards, J.A. (1986). Remote Sensing Digital Image Analysis. New York: Springer- Verlag.
Rutzinger, M., Maukisch, M., Petrini-Monteferri, F., (2007). Development of algorithms for the extraction of linear patterns (lineaments) from airborne laser scanning data. In: Proceedings of the Conference ’Geomorphology for the Future’, Obergurgl, pp. 1–82007.
Sunardi, Kaniawati, K., Husodo, T., Malini, D. M., & Astari, A. J. (2012). Distribution of Fish in the Upper Citarum River: an Adaptive Response to Physico-Chemical Properties. HAYATI Journal of Biosciences, 19(4), 191–196. https://doi.org/10.4308/hjb.19.4.191.
Swain, C.J., (1976). A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature. Comput. Geosci. 1 (4), 231–240.
Verdiansyah, O. (2019), A Desktop Study to Determine Mineralization Using Lineament Density Analysis at Kulon Progo Mountains, Yogyakarta and Central Java Province, Indonesia. Indonesian Journal of Geography. 51 (1), 31-41. https://doi.org/10.22146/ijg.37442Webring, M.E., (1981). Minc, a gridding program based on minimum curvature. U.S. Geol. Survey, Open-file Rep., pp. 81–1224.
Xiang, L., Wang, H., Steffen, H., Wu, P., Jia, L., Jiang, L., & Shen, Q. (2016). Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth and Planetary Science Letters, 449, 228–239. https://doi.org/10.1016/j.epsl.2016.06.002.
Yang, X., Buscheck, T. A., Mansoor, K., Wang, Z., Gao, K., Huang, L., Appriou, D., & Carroll, S. A. (2019). Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers. International Journal of Greenhouse Gas Control, 90(July), 102803. https://doi.org/10.1016/j.ijggc.2019.102803.
Yeomans, C. M., Middleton, M., Shail, R. K., Grebby, S., & Lusty, P. A. J. (2019). Computers and Geosciences Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England. Computers and Geosciences, 123(November 2018), 137–148. https://doi.org/10.1016/j.cageo.2018.11.005.
Zahran, K. H., & Radwan, A. M. (2012). Geodynamics implication of GPS and satellite altimeter and gravity observations to the Eastern Mediterranean. NRIAG Journal of Astronomy and Geophysics, 1(1), 51–60. https://doi.org/10.1016/j.nrjag.2012.11.006.
Zhang, G., Lu, Q., Zhang, G., Lin, P., Jia, Z., Suo, K., (2018). Joint interpretation of geological, magnetic, AMT, and ERT data for mineral exploration in the northeast of inner Mongolia, China. Pure Appl. Geophys. 175, 989–1002.
Zhang, Y. Z., Xu, H. J., Wang, W. D., Duan, H. R., & Zhang, B. P. (2011). Gravity anomaly from satellite gravity gradiometry data by GOCE in Japan Ms9.0 strong earthquake region. Procedia Environmental Sciences, 10(PART A), 529–534. https://doi.org/10.1016/j.proenv.2011.09.086.
Zhdanov, M.S., (2002). Geophysical Inverse Theory and Regularization Problems. Elsevier 633 p.
Zhdanov, M.S., Ellis, R., Mukherjee, S., (2004). Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 69 (4), 925–937.
DOI: https://doi.org/10.22146/ijg.52402
Article Metrics
Abstract views : 3421 | views : 2523Refbacks
Copyright (c) 2021 Andi Agus Nur, Gumilar Utamas Nugraha
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC