Oceanic Effect on Precipitation Development in the Maritime Continent during Anomalously-Wet Dry Seasons in Java

https://doi.org/10.22146/ijg.63543

Erma Yulihastin(1*), Muhammad F P(2), Suaydhi Suaydhi(3), Iis Sofiati(4)

(1) Center of Atmospheric Research and Technology, National Research and Innovation Agency, Bandung, West Java, 40173, Indonesia
(2) Center of Atmospheric Research and Technology, National Research and Innovation Agency, Bandung, West Java, 40173, Indonesia
(3) Center of Atmospheric Research and Technology, National Research and Innovation Agency, Bandung, West Java, 40173, Indonesia
(4) Center of Atmospheric Research and Technology, National Research and Innovation Agency, Bandung, West Java, 40173, Indonesia
(*) Corresponding Author

Abstract


Anomalous rainfall during the dry season over the tropical region is determined by sea surface temperature (SST) anomalies driven by remote forcing. Anomalous precipitation during the dry season in Java (the so-called "anomalously-wet dry season”) has increased the number of hydrometeorological disasters, with notable events occurring in 2010, 2013, and 2016. Here we analyze anomalously-wet dry seasons in Java from 2000 to 2019 using variables such as precipitation, wind, temperature, outgoing longwave radiation, and SST obtained from the Tropical Rainfall Measuring Mission and ERA5 European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. This study focuses on anomalously-wet dry seasons in Java during the absence periods of negative phase for the El Niño Southern Oscillation (ENSO) and/or Indian Ocean Dipole (IOD) by identification the main caused. The results show that the contribution of local seas is more significant (37%) in developing anomalously-wet dry seasons than La Niña (33%), the IOD and La Niña combined (17%), and the IOD alone (13%). Local Indonesian seas play a significant role in causing extreme precipitation and spread over the Maritime Continent. We also find that SSTs in the southern Java Sea are sensitive to a negative IOD, but not to La Niña.


Keywords


Anomalously-wet dry season; Maritime Continent; Precipitation; ENSO; IOD

Full Text:

PDF


References

Andreoli, R. V., de Souza, R. A. F., Kayanob, M. T., & Candido, L. A. (2011). Seasonal anomalous rainfall in the central and eastern Amazon and associated anomalous oceanic and atmospheric patterns. International Journal of Climatology. DOI: 10.1002/joc.2345.

Ashok, K., Guan, Z., Saji, N. H., & Yamagata, T. (2004). Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. Journal of Climate, 17, 3141–3155.

As-syakur, A. R., Andyana, I. W. S., Mahendra, M. S., Arthana, I. W., Merit, I. N., Kasa, I. W., Ekayanti, N. W. Nuarsa, I. W., & Sunarta I. N. (2014). Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM multi-satellite precipitation analysis (TMPA). International Journal of Climatology, 34, 3825-3839.

As-syakur, A. R., Imaoka, K., Ogawara, K., Yamanaka, M. D., Tanaka, T., Kashino, Y., Nuarsa, I. W., & Osawa, T. (2019). Analysis of spatial and seasonal differences in the diurnal rainfall cycle over Sumatera revealed by 17-year TRMM 3B42 dataset. SOLA, 15, DOI: 10.2151/sola. 2019-039.

Chen, Z., Wen, Z., Wu, R., Zhao, P., & Cao, J. (2014). Influence of two types of El Niños on the East Asian climate during boreal summer: A numerical study. Climate Dynamics, 43, 469–481.

Chen, W., & Guan, Z. (2017). A joint monsoon index for East Asian–Australian monsoons during boreal summer. Atmospheric Science Letters, 18: 403–408.

Dayem, K. E., Noone, D. C., & Molnar, P. (2007). Tropical western Pacific warm pool and Maritime Continent precipitation rates and their contrasting relationships with the Walker circulation. Journal of Geophysical Research, 112, 151–156.

Fasullo, J., & Webster, P. J. (2003). A hydrological definition of Indian monsoon onset and withdrawal. Journal of Climate, 16, 3200–3211.

Ham, Y-G., Choi, J-Y., & Kug, J-S. (2017). The weakening of the ENSO-Indian Ocean Dipole (IOD) coupling strength in recent decades. Climate Dynamics, 49, 249-261.

Hamada, J-I., Mori, S., Kubota, H., & Yamanaka, M. D. (2012). Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean Dipole and El Niño-Southern Oscillation events. SOLA, 8, 069-072.

Satyawardhana, H., Trismidianto, & Yulihastin, E. (2018). Influence of ENSO on Deviation of The Season Onset in Java Based on CCAM Downscaling Data. IOP Conf. Series: Earth and Environmental Science, 166, 1-10, DOI :10.1088/1755-1315/166/1/012030.

Harris, A., Rahman, S., Hossain, F., Yarborough, L., Bagtzoglou, A. C., & Easson, G. (2007). Satellite-based flood modelling using TRMM-based rainfall products. Sensors, 7, 3416–3427.

Hatmaja, R. B., Rusmanansari, A. H., & Radjawane, I. M. (2019). The dynamics of negative Indian Ocean Dipole (nIOD) and its relation to the anomalous high rainfall in West Java Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 303, 1-9. DOI: doi:10.1088/1755-1315/303/1/012004.

Hendon, H. H. (2003). Indonesian rainfall variability: Impacts of ENSO and local air-sea interaction. Journal of Climate, 16, 1775-1790.

Hersbach, H., Bill, B., Paul, B., Shoji, H., András, H., Joaquín, M.‐S., Julien, N., Carole, P., Raluca, R., Dinand, S., Adrian, S., Cornel, S., Saleh, A., Xavier, A., Gianpaolo, B., Peter, B., Gionata, B., Jean, B., Massimo, B., Giovanna, D.C., Per, D., Dick, D., Michail, D., Rossana, D., Johannes, F., Richard, F., Manuel, F., Alan, G., Leo, H., Sean H., Robin, J. H., Elías, H., Marta, J., Sarah, K., Patrick, L., Philippe, L., Cristina, L., Gabor, R., Patricia, d. R., Iryna, R., Freja, V., Sebastien, V., & Jean‐Noël, T. (2020). The Era5 global reanalysis. Quarterly Journal of Royal Meteorological Society. DOI: 10.1002/qj.3803 (data available at: 10.1002/qj.3803, last access: 16 May 2020).

Huffman, G. (2012). TRMM (TMPA-RT) Near Real-Time IR precipitation estimate L3 1-hour 0.25 degree × 0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Doi: 10.5067/TRMM/TMPA/3HE-IR/7.

Huffman, G. J., Adler, R. F., Curtis, S., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., & Wolf, D. B. (2007). The TRMM Multi-Satellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined sensor precipitation estimates at fine scales. Journal Hydrometeorology, 8, 38–55. Doi: 10.1175/JHM560.1 (data available at: https://disc.gsfc.nasa.gov/datasets/TRMM_3B41RT_7, last access: 16 May 2020).

Kajikawa, Y., Wang, B., & Yang, J. (2009). A multi-time scale Australian monsoon index, International Journal of Climatology, DOI: 10.1002/joc.1955.

Kida, S., & Richards, K. J. (2009) Seasonal sea surface temperature variability in the Indonesian Seas. Journal of Geophysical Research. Doi:10.1029/ 2008JC005150.

Kubota, H., Shirooka, R., & Hamada, J-I. (2011). Interannual rainfall variability over the eastern Maritime Continent. Journal of Meteorological Society of Japan, 89A, 111-122.

Kurniadi, A., Weller E., Ki Ming S., Gyu Seong M. (2021). Independent ENSO and IOD impacts on rainfall extremes over Indonesia. International Journal of Climatology, 41(2) doi:10.1002/joc.7040.

Lestari, S., Hamada, J-I., Syamsudin, F., Sunaryo, Matsumoto, J., & Yamanaka, M.D. (2016). ENSO influences on rainfall extremes around Sulawesi and Moluccas Islands in the eastern Indonesian Maritime Continent. SOLA, 12, 37-41.

Lestari, S., King, A., Vincent, C., Karoli, D., Protat, A. (2019). Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia. Weather and Climate Extremes, 24, 1-13.

Li, Y., Gupta, A. S., Taschetto, A. S., Jourdain, N. C., Luca, A. D., Done, J. M., & Luo, J-J. (2020). Assessing the role of the ocean-atmosphere coupling frequency in the western Maritime Continent rainfall. Climate Dynamics. DOI:10.1007/s0038 2-020-05266 -7.

Lisonbee, J., Ribbe, J., & Wheeler, M. (2019). Defining the north Australian monsoon onset: A systematic review. Progress in Physical Geography: Earth and Environment. DOI: 10.1177/0309133319881107.

Liu, C., Moncrieff, M. W., & Tuttle, J. D. (2008). A note propagating rainfall episodes over the Bay of Bengal, Quarterly Journal of the Royal Meteorological Society, 134, 787–792.

Marathe, S., Ashok, K., Swapna, P., & Sabin, T. P. (2015). Revisiting El Niño Modokis. Climate Dynamics, 45, 3527–3545.

McBride J., Haylock M R., Nochlos N. (2003). Relationships between the Maritime Continent Heat Source and the El Niño–Southern Oscillation Phenomenon. Journal of Climate 16(17). doi:10.1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2.

Ogino, S-Y., Yamanaka, M. D., Mori, S., Matsumoto, J. (2016). How much is the precipitation amount over the tropical coastal region? Journal of Climate, 29, 1231-1236.

Qian, J. H. (2008). Why precipitation is mostly concentrated over islands in the Maritime Continent. Journal of Atmospheric Sciences, 65, 1428–1441.

Qu, T., Meyers, G., & Godfrey, J. S. (1994). Ocean dynamics in the region between Australia and Indonesia and its influence on the variation of sea surface temperature in a global general circulation model. Journal of Geophysical Research, 99, 433-445.

Saji, N. H., & Yamagata, T. (2003). Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25, 151-169.

Supari, Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A., & Juneng, L. (2018). ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dynamics, 51, 2559–2580.

Suprapto. (2017). Tanah longsor dan banjir bencana yang mematikan di Indonesia (data tahun 2008-2017). Technical Report, BNPB.

Thompson, B., Sanchez, C., Sun, X., Song, G., Lu, J., Huang, X-Y., & Tkalich, P. (2018). A high resolution atmosphere-ocean coupled model for the western Maritime Continent: development and preliminary assessment. Climate Dynamics. Doi:10.1007/s00382-018-4367-0.

Trenberth, K. E. (1997). The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771-2777.

Wang, M., Guan, Z., and Jin, D. (2018). Two new sea surface temperature anomalies indices for capturing the eastern and central equatorial Pacific type El Niño–Southern Oscillation events during boreal summer. International Journal of Climatology, 38, 4066–4076.

Xu, Q., Guan, Z., Jin, D., & Hu, D. (2019). Regional characteristics of interannual variability of summer rainfall in the Maritime Continent and their related anomalous circulation patterns. Journal of Climate, 32, 4179- 4192.

Villafuerte, M. Q., & Matsumoto, J. (2015). Significant influences of global mean temperature and ENSO on extreme rainfall in Southeast Asia, 28, 1905-1919.

Yamanaka, M. D. (2016). Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmospheric Research, 178, 231-259.

Yamanaka, M. D., Ogino, S.-Y., Wu, P.-M., Hamada, J.-I., Mori, S., Matsumoto, J. & Syamsudin, F. (2018). Maritime Continent coastlines controlling earth’s climate. Progress in Earth and Planetary Science, 5, 1–28.

Yong, B., Liu, D., Gourley, J. J., Tian, Y., Huffman, G. J., Ren, L., & Hong, Y. (2015). Global view of real-time TRMM multisatellite precipitation analysis, Bulletin of the American Meteorological Society, 96, 283–296.

Yulihastin, E., Hadi, T. W., Ningsih, N. S., Syahputra, M. R. (2020). Early morning peaks in the diurnal cycle of precipitation over the northern coast of West Java and possible influencing factors. Annales Geophysicae, 38, 231–242.



DOI: https://doi.org/10.22146/ijg.63543

Article Metrics

Abstract views : 2605 | views : 1992

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Erma - Yulihastin

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC