Utilization of Satellite Imagery for Mapping the Distribution of Seagrass on Buhung Pitue Island

https://doi.org/10.22146/ijg.82259

Dwi Rosalina(1*), Yasser Arafat(2), A Nurtasya Wahda(3), Katarina Hesty Rombe(4), Ruly Isfatul Khasanah(5), Dini Sofarini(6)

(1) Marine Engineering, Politeknik Kelautan dan Perikanan Bone, Sulawesi Selatan, Indonesia.
(2) Marine Engineering, Politeknik Kelautan dan Perikanan Bone, Sulawesi Selatan, Indonesia.
(3) Marine Engineering, Politeknik Kelautan dan Perikanan Bone, Sulawesi Selatan, Indonesia.
(4) Marine Engineering, Politeknik Kelautan dan Perikanan Bone, Sulawesi Selatan, Indonesia.
(5) Marine Science Program, Faculty of Science and Technology, State Islamic University of Sunan Ampel, Surabaya, East Java, Indonesia
(6) Manajemen of Aquatic Resources, Universitas Lambung Mangkurat, South Kalimantan. Indonesia
(*) Corresponding Author

Abstract


Buhung Pitue Island has seagrass beds those which are spread almost evenly along its coast. Research using remote sensing technology in an effort to support seagrass conservation in Indonesia needs to be carried out. Spatial data is relatively easy to obtain because there are many types of images with various spatial resolutions. The image can be obtained on google earth. Analysis of the distribution of seagrass areas was obtained by digitizing on screen in ArcGIS software, namely in seagrass areas where the boundaries are known. Digitizing is conducted by enlarging the seagrass area in the downloaded image, performing radiometric and geometric corrections, and digitizing to create a shapefile (shp) storing the location, shape, and attributes of geographic features. The seagrass distribution area of Buhung Pitue Island was of 36.5 Ha in 2014 and was of 39.6 in 2021. The rate of change in area from 2014 to 2021 was of 0.085% (an increase of 3.1 ha). The distribution area of seagrass has increased due to natural factors and restrictions on human activities during the COVID-19 pandemic. In addition, another factor supporting the increase in seagrass distribution is the abundance of Enhalus acoroides seagrass species growing and spreading over long distances. The sea surface temperature was high, which was 30.37 °C, while the current speed was categorized as slow because it was around 0.01 m/s. Although the results are obtained from high-resolution imagery, an accuracy test still needs to be conducted.


Keywords


Seagrass distribution area; ArcGIS; Google earth; Buhung Pitue Island

Full Text:

PDF


References

Alqasemi, A.S., Hereher, ME., Kaplan, G., Al-Quraishi, AMF., Saibi, H. 2021. Impact of COVID-19 Lockdown Upon the Air Quality and Surface Urban Heat Island Intensity Over The United Arab Emirates, Science of The Total Environment, 767, 144330, https://doi.org/10.1016/j.scitotenv.2020.144330.

Artika SR, Ambo-Rappe R, Teichberg M, Moreira-Saporiti A and Viana IG. 2020. Morphological and Physiological Responses of Enhalus acoroides Seedlings Under Varying Temperature and Nutrient Treatment. Front. Mar. Sci. 7:325. doi: 10.3389/fmars.2020.00325

Asmus, H., Kneer, D., Pogoreutz, C., Blankenhorn, S., Jompa, J., Nurdin, N., Priosambodo, D. 2022. 6 - Ecology of Seagrass Beds In Sulawesi—Multifunctional key habitats at the risk of destruction. Science for the Protection of Indonesian Coastal Ecosystems (SPICE), Elsevier, 2022, pp 201-250. https://doi.org/10.1016/B978-0-12-815050-4.00014-6.

G. Azzari, D.B. Lobell,. 2017. Landsat-based classification in the cloud: An Opportunity for a Paradigm Shift in Land Cover Monitoring. Remote Sensing of Environment, 202, Pages 64-74. https://doi.org/10.1016/j.rse.2017.05.025

Bal, S.K., Minhas, P.S. 2017. Atmospheric Stressors: Challenges and Coping Strategies. In: Minhas, P., Rane, J., Pasala, R. (eds) Abiotic Stress Management for Resilient Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5744-1_2.

Barnes, R.S.K. 2013. Distribution Patterns of Macrobenthic Biodiversity in the Intertidal Seagrass Beds of an Estuarine System, and Their Conservation Significance. Biodivers Conserv 22, 357–372. https://doi.org/10.1007/s10531-012-0414-z.

Brodie, G., Holland, E., N'Yeurt, A.D.R., Soapi, K., Hills, J. 2020. Seagrasses and seagrass habitats in Pacific small island developing states: Potential loss of benefits via human disturbance and climate change. 2020. Marine Pollution Bulletin, 160, 111573. https://doi.org/10.1016/j.marpolbul.2020.111573

Carpenter, S.; Byfield, V.; Felgate, S.L.; Price, D.M.; Andrade, V.; Cobb, E.; Strong, J.; Lichtschlag, A.; Brittain, H.; Barry, C.; Fitch, A.; Young, A.; Sanders, R.; Evans, C. 2022. Using Unoccupied Aerial Vehicles (UAVs) to Map Seagrass Cover from Sentinel-2 Imagery. Remote Sens. 2022, 14, 477. https://doi.org/10.3390/rs14030477

Carr, J.A., D’Odorico, P., McGlathery, KJ., Wilberg, P.L. 2016. Spatially Explicit Feedbacks Between Seagrass Meadow Structure, Sediment and Light: Habitat Suitability for Seagrass Growth. Advances in Water Resources, 93: 315-325. https://doi.org/10.1016/j.advwatres.2015.09.001

Chefaoui, R.M., Assis, J., Duarte, C.M., Serrao, EA. 2016. Large-Scale Prediction of Seagrass Distribution Integrating Landscape Metrics and Environmental Factors: The Case of Cymodocea nodosa (Mediterranean–Atlantic). Estuaries and Coasts 39, 123–137. https://doi.org/10.1007/s12237-015-9966-y

Clarito, Q. Y., Suerte, N. O., Bontia, E. C., & Clarito, I. M. 2020. Determining Seagrassess Community Structure Using The Braun – Blanquet Technique in The Intertidal Zones of Islas De Gigantes, Philippines. Sustinere: Journal of Environment and Sustainability, 4(1), 1–15. https://doi.org/10.22515/sustinere.jes.v4i1.96

Collier, C. J., and M. Waycott. 2014. Temperature Extremes Reduce Seagrass Growth And Induce Mortality. Marine Pollution Bulletin, 83(2) : 483-490. https://doi.org/10.1016/j.marpolbul.2014.03.050

Collier CJ, Ow YX, Langlois L, Uthicke S, Johansson CL, O’Brien KR, Hrebien V and Adams MP. 2017. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species. Front. Plant Sci. 8:1446. doi: 10.3389/fpls.2017.01446

Collier,CJ., Langlois, L., Ow, Y., Johansson, C., Giammusso, M., Adams, MP., O'Brien, KR., Uthicke, S. 2018. Losing a winner: Thermal Stress and Local Pressures Outweigh The Positive Effects of Ocean Acidification for Tropical Seagrasses. New Phytologist, 219: 1005-1017. https://doi.org/10.1111/nph.15234

Duarte, C., Losada, I., Hendriks, I.E., Mazarrasa, I., Marba, N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Clim Change 3, 961–968. https://doi.org/10.1038/nclimate1970.

L.G. Egea, R. Jiménez-Ramos, J.J. Vergara, I. Hernández, F.G. Brun, 2018. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Marine Pollution Bulletin, 134: 14-26. https://doi.org/10.1016/j.marpolbul.2018.02.029.

Fitrian, T., Kusnadi, A., Persilette, R.N. 2017. Seagrass Community Structure of Tayando-Tam Island, Southeast Moluccas, Indonesia. Biodiversitas, 18(2): 788-794. DOI https://doi.org/10.13057/biodiv/d180246

Grech, A, Chartrand-Miller, K., Erftemeijer P., Fonseca, M., McKenzie, L., Rasheed, M.., Taylor, H., Coles, R. 2012. A Comparison Of Threats, Vulnerabilities And Management Approaches iIn Global Seagrass Bioregions. Environment Research Letter, 7(2) : 1-8. DOI 10.1088/1748-9326/7/2/024006

Gissi, L, Manea, E., Mazaris, AD., Fraschetti, S., Almpanidou, V., Bevilacqua, S., Coll, M., Guarnieri, G., Lloret-Lloret, E., Pascual, M., Petza, D., Rilov, G., Schonwald, M., Stelzenmüller, V., Katsanevakis, S. 2021. A Review Of The Combined Effects Of Climate Change And Other Local Human Stressors On The Marine Environment. Science of The Total Environment, 755, 142564. https://doi.org/10.1016/j.scitotenv.2020.142564.

Ceccherelli, G., Pinna, S., Cusseddu, V., Bulleri, F. 2014. The role of disturbance in promoting the spread of the invasive seaweed Caulerpa racemosa in seagrass meadows. Biol Invasions 16, 2737–2745. https://doi.org/10.1007/s10530-014-0700-7

Harah, Z. M., & Sidik, B. J. 2013. Occurrence and distribution of seagrasses in waters of Perhentian Island Archipelago, Malaysia. Journal of Fisheries and Aquatic Science, 8(3): 441.

Hansen, J.C.R., Reidenbach, M.A. 2013. Seasonal Growth and Senescence of a Zostera marina Seagrass Meadow Alters Wave-Dominated Flow and Sediment Suspension Within a Coastal Bay. Estuaries and Coasts 36, 1099–1114. https://doi.org/10.1007/s12237-013-9620-5.

Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.L.; Ticzon, V.; Bejarano, S.; Mumby, P.J. 2016. Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote Sens. 2016, 8, 118. https://doi.org/10.3390/rs8020118

Hossain, M.S., J.S. Bujang, M.H. Zakaria, & M. Hashim. 2015. Application of Landsat Images To Seagrass Areal Cover Change Analysis for Lawas, Terengganu and Kelantan of Malaysia. Continental Shel Research, 110: 124-148. https://doi.org/10.1016/j.csr.2015.10.009

Houngnandan, F., Kéfi, S., Deter, J. 2020. Identifying Key-Conservation Areas for Posidonia Oceanica Seagrass Beds, Biological Conservation, 247, 108546, https://doi.org/10.1016/j.biocon.2020.108546.

Hu, Q., Wu, W., Xia, T., Yu, Q., Yang, P., Li, Z., & Song, Q. (2013). Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sensing, 5(11), 6026-6042.

Indriyani, S., Mahyuddin, H., & Indrawati, E. 2019. Analisa Faktor Oseanografi Dalam Mendukung Budidaya Rumput Laut Kappaphycus Alvarezii Di Perairan Pulau Sembilan Kabupaten Sinjai. Journal of Aquaculture and Environment, 2(1), 6-11.

Islam, MdS., and Tanaka, M. 2004. Impacts of Pollution on Coastal and Marine Ecosystems Including Coastal and Marine Fisheries and Approach For Management: A Review and Synthesis. Marine Pollution Bulletin, 48, Issues 7-8: 624-649. https://doi.org/10.1016/j.marpolbul.2003.12.004

Joseph, L., Singh, P., Singh, AA., Raj, K., Maharaj, A. 2018. Implications of Seagrass Ecosystem Degradation on Marine Resources and People’s Livelihood: A Case Study from Komave Village, Fiji, 2(3): 1-13. DOI: 10.9734/AJFAR/2018/v2i330011.

Koch, M., Bowes, G., Ross, C., Xing-Hai Zhang. 2013. Climate Change and Ocean Acidification Effects on Seagrasses and Marine Macroalgae. Global Change Biology, 19(1): 103-132. https://doi.org/10.1111/j.1365-2486.2012.02791.x.

Kumar, A., Singh, A.R., Deng, Y., He, X., Kumar, P., Bansal, R.C. 2019. Integrated Assessment of a Sustainable Microgrid for a Remote Village in Hilly Region. Energy Conversion and Management, 180, Pages 442-472. https://doi.org/10.1016/j.enconman.2018.10.084.

Kutser, T., Hedley, J., Giardino, C., Roelfsema, C., Brando, V.E. 2020. Remote Sensing of Shallow Waters – A 50 year Retrospective and Future Directions. Remote Sensing of Environment, 240, 111619. https://doi.org/10.1016/j.rse.2019.111619

Liu, M., Ma, J., Kang, L., Wei, Y., He, Q., Hu, X., Li, H. 2019. Strong Turbulence Benefits Toxic And Colonial Cyanobacteria In Water: A Potential Way Of Climate Change Impact On The Expansion Of Harmful Algal Blooms. Science of The Total Environment, 670: 613-622. https://doi.org/10.1016/j.scitotenv.2019.03.253.

Madin, E.M.P., Dill, L.M., Ridlon, A.D., Heithaus, M.R., Warner, R.R. 2015. Human Activities Change Marine Ecosystems By Altering Predation Risk. Global Change Biology, 22(1): 44-60. https://doi.org/10.1111/gcb.13083

Manangkalangi, E., Sembel, L., Tebaiy, S., Manuputty, A., Rumayomi, M.R., Musyeri, P., Sawaki, D., Orissu, D., Manumpil, A.W., Kaber, Y. 2022. Evaluation of Seagrass Beds as a Foraging and Nursery Habitat Based on The Structure of The Fish Community in Nusmapi Island, West Papua, Indonesia. Biodiversitas, 23(10): 5165-5174. DOI: 10.13057/biodiv/d231024.

Maras, E.E. 2015. Improved Non-Parametric Geometric Corrections For Satellite Imagery Through Covariance Constraints. J Indian Soc Remote Sens 43, 19–26. https://doi.org/10.1007/s12524-014-0391-7

Maxwell, PS., Eklöf, JS., van Katwijk, MM., O'Brien, KR., Torre-Castro, MDL., Boström, C., Bouma, TJ., Krause-Jensen, D., Unsworth, RKF., Brigitta I. van Tussenbroek, Tjisse van der Heide. 2017. The Fundamental Role of Ecological Feedback Mechanisms for The Adaptive Management of Seagrass Ecosystems – A Review. Biological Reviews, 92(3): 1521-1538. https://doi.org/10.1111/brv.12294

McCloskey, R.M and Unsworth, R.K.F. 2015. Decreasing Seagrass Density Negatively Influence Associated Fauna. PeerJ 3:e1053 https://doi.org/10.7717/peerj.1053

McKenzie, L.J., Yoshida, R.L., Aini, J.W., Andréfouet, S., Colin, P.L., Cullen-Unsworth, L.C., Hughes, A.T., Payri, C.E., Rota, M., Shaw, C., Skelton, P.A., Tsuda, R.T., Vuki, V.C., Unsworth, R.K.F. 2021.Seagrass Ecosystems of The Pacific Island Countries and Territories: A Global Bright Spot. Marine Pollution Bulletin, 167, 112308. https://doi.org/10.1016/j.marpolbul.2021.112308.

Melsasail, K., Awan, A., Papilaya, P.M. 2018. Analysis Of Environmental Physical-Chemical Factors and Macroalga Species In The Coastal Water of Nusalaut, Central Maluku-Indonesia. Sriwijaya Journal of Environment, 3(1): 31-36. DOI: http://dx.doi.org/10.22135/sje.2018.3.1.31-36

Menhat, M., Zaideen, IMM., Yusuf, Y., Salleh, NHM., Zamri, MA., Jeevan, J. 2021.The impact of Covid-19 pandemic: A review on maritime sectors in Malaysia. Ocean & Coastal Management, 209, 105638. https://doi.org/10.1016/j.ocecoaman.2021.105638

Grace E.P. Murphy, Noreen E. Kelly, Heike K. Lotze, and Melisa C. Wong. 2022. Incorporating Anthropogenic Thresholds To Improve Understanding of Cumulative Effects on Seagrass Beds. FACETS. 7(): 966-987. https://doi.org/10.1139/facets-2021-0130

Naidu, R., Muller-Karger, F., McCarthy, M. 2018. Mapping of Benthic Habitats in Komave, Coral Coast Using WorldView-2 Satellite Imagery. In: Leal Filho, W. (eds) Climate Change Impacts and Adaptation Strategies for Coastal Communities. Climate Change Impacts and Adaptation Strategies for Coastal Communities, 337-355. https://doi.org/10.1007/978-3-319-70703-7_18

Namakule, Umar, Rehena, Johanis, F., Dominggus. 2017. Seagrass Community Structure in Various Zones in Coastal Waters of Haya Village, Central Moluccas District, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 10(5): 1226-1237.

Ng, LS., Campos-Arceiz, A., Sloan, S., Hughes, A.C., Tiang, DCF., Li, BV., Lechner, A.M. 2020. The Scale of Biodiversity Impacts of The Belt and Road Initiative in Southeast Asia. Biological Conservation, 248, 108691. https://doi.org/10.1016/j.biocon.2020.108691

Nguyen, HM., Ralph, PJ., Marin-Guirao, L., Pernice, M., Procaccini, G. 2021. Seagrasses in an Era of Ocean Warming : a Review. Biological Reviews, 95(5): 2009-2030. https://doi.org/10.1111/brv.12736

Nugraha, A.H., Tasabaramo, I.A., Hernawan, U.E., Rahmawati, S., Putra, R.D., Darus, R.F. 2021. Diversity, Coverage, Distribution And Ecosystem Services Of Seagrass In Three Small Islands Of Northern Papua, Indonesia: Liki Island, Meossu Island and Befondi Island. Biodiversitas, 22(12): 5544-5549. DOI: 10.13057/biodiv/d221238

O'Brien, K.R., Waycott, M., Maxwell, P., Kendrick, G.A., Udy, J.W., Ferguson, A.J.P., Kilminster, K., Scanes, P., McKenzie, L.J., McMahon, K., Adams, M.P., Samper-Villarreal, J., Collier, C., Lyons, M., Mumby, P.J., Radke, L., Christianen, M.J.A., Dennison, W.C. 2018. Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Marine Pollution Bulletin, 134, Pages 166-176. https://doi.org/10.1016/j.marpolbul.2017.09.006

Ondiviela, B., Losada, I.J., Lara, J.L., Maza, M., Galván, C., Bouma, T.J., Belzen, J.V. 2014. The Role of Seagrasses in Coastal Protection in a Changing Climate. Coastal Engineering, 87, pp 158-168. https://doi.org/10.1016/j.coastaleng.2013.11.005

Pazzaglia, J., Santillán-Sarmiento, A., Ruocco, M., Dattolo, E., Ambrosino, L., Marín-Guirao, L., Procaccini, G. Local Environment Modulates Whole-Transcriptome Expression in The Seagrass Posidonia Oceanica Under Warming and Nutrients Excess, Environmental Pollution, 303, 119077. https://doi.org/10.1016/j.envpol.2022.119077.

Pivato, M., Carniello, L., Viero, DP., Soranzo, C., Defina, A., Silvestri, S. 2020. Remote Sensing for Optimal Estimation of Water Temperature Dynamics in Shallow Tidal Environments. Remote Sens. 12(1), 51; https://doi.org/10.3390/rs12010051.

Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. 2019. A Review of Remote Sensing Approaches for Monitoring Blue Carbon Ecosystems: Mangroves, Seagrassesand Salt Marshes during 2010–2018. Sensors 2019, 19(8),1933. https://doi.org/10.3390/s19081933.

Wicaksono, P and Hafizt, M. 2013. Mapping Seagrass from Space: Addressing the Complexity of Seagrass LAI Mapping, European Journal of Remote Sensing, 46:1, 18-39, DOI: 10.5721/EuJRS20134602

Rappe, RA. 2022. The Success Of Seagrass Restoration Using Enhalus acoroides Seeds Is Correlated With Substrate And Hydrodynamic Conditions, Journal of Environmental Management. 310, 114692 https://doi.org/10.1016/j.jenvman.2022.114692.

Rasyid, N., Munir, Andryan, D, Bengen, D.G, Subhan, B. 2022. Assessment of marine debris in seagrass beds of Pramuka Island, Kepulauan Seribu. IOP Conf. Ser.: Earth Environ. Sci. 967 012014. DOI 10.1088/1755-1315/967/1/012014

Reidenbach, MA., and Thomas, EL. 2018. Influence of The Seagrass, Zostera marina on Wave Attenuation and Bed Shear Stress Within a Shallow Coastal Bay, Front. Mar. Sci. 5:397 https://doi.org/10.3389/fmars.2018.00397

Rosalina, D., Herawati, E. Y., Risjani, Y., & Musa, M. 2018. Keanekaragaman Spesies Lamun di Kabupaten Bangka Selatan Provinsi Kepulauan Bangka Belitung. EnviroScienteae, 14(1), 21-28. DOI: http://dx.doi.org/10.20527/es.v14i1.4889

Rosalina, D., Rombe, K.H., Hasnatang. 2022. Pemetaan Sebaran Lamun Menggunakan Metode Lyzenga Studi Kasus Pulau Kapoposang Provinsi Sulawesi Selatan. Jurnal Kelautan Tropis, 25(2): 169-178. DOI: https://doi.org/10.14710/jkt.v25i2.13484.

Rosalina, D., Rombe, K.H., Irwan, Jamil, K., Surachmat, A., Utami, E. 2022b. Diversity, Ecological Index, and Distribution Pattern of Seagrass in Coastal Waters of North Bali. Journal of Hunan University Natural Sciences, 49(9): 2-10. https://doi.org/10.55463/issn.1674-2974.49.9.1.

Ruiz-Montoya, L., Lowe, R.J. & Kendrick, G.A. 2015. Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Mov Ecol 3, 9. https://doi.org/10.1186/s40462-015-0034-9

Sari, S.P., and Rosalina, D. 2016. Mapping and Monitoring of Mangrove Density Changes on Tin Mining Area, Procedia Environmental Sciences, 33: 436-442. https://doi.org/10.1016/j.proenv.2016.03.094.

Savva, I., Bennett, S., Roca, G., Jorda, G., Marba, N. 2018. Thermal Tolerance of Mediterranean Marine Macrophytes: Vulnerability to Global Warming. Ecology and Evolution. 8(23): 12032-12043. https://doi.org/10.1002/ece3.4663

Short, FT., Kosten, S., Morgan, PA., Malone, S., Moore, GE. 2016. Impacts of Climate Change on Submerged and Emergent Wetland Plants, Aquatic Botany, 135: 3-17. https://doi.org/10.1016/j.aquabot.2016.06.006.

Silvi, M. V., Redjeki, S., & Riniatsih, I. 2022. Kandungan Nutrien di Sedimen pada Ekosistem Padang Lamun di Teluk Awur dan Pulau Panjang, Jepara. Journal of Marine Research, 11(3): 420-428. https://doi.org/10.14710/jmr.v11i3.32219

Sondak, CFA and Kaligis, E.Y. 2022. Assessing The Seagrasses Meadows Status and Condition: A Case Study of Wori Seagrass Meadows, North Sulawesi, Indonesia. Biodiversitas, 23(4): 2156-2166. DOI: 10.13057/biodiv/d230451.

Thomson, JA., Burkholder, DA., Heithaus, MR., Fourqurean, JW., Fraser, MW., Statton, J., Kendrick, GA. 2015. Extreme Temperatures, Foundation Species, and Abrupt Ecosystem Change: an Example From an Iconic Seagrass Ecosystem. Global Change Biology, 21(4): 1463-1474. https://doi.org/10.1111/gcb.12694

Tuahatu J. W., Hulopy M., Louhenapessy D. G. 2016. Community structure of seagrass in Waai and Lateri waters, Ambon Island, Indonesia. AACL Bioflux 9(6):1380-1387.

Thushari, G.G.N and Senevirathna, J.D.M. 2020. Plastics Pollution in The Marine Environment. Heliyon, 6 (8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709

Unsworth, RKF., Ambo-Rappe, R., Jones, BL., La Nafie, YA., Irawan, A., Hernawan, U.E., Moore, AM., Cullen-Unsworth, LC. 2018. Indonesia's globally significant seagrass meadows are under widespread threat. Science of The Total Environment, 634, pp 279-286. https://doi.org/10.1016/j.scitotenv.2018.03.315.

Stelzenmüller, V., J. Letschert, A. Gimpel, C. Kraan, W.N. Probst, S. Degraer, R. Döring. 2022. From plate to plug: The Impact of Offshore Renewables on European Fisheries and The Role of Marine Spatial Planning, Renewable and Sustainable Energy Reviews, 158, 112108. https://doi.org/10.1016/j.rser.2022.112108

Voinov, A., Kolagani, N., McCall, M.K., Glynn, P.D., Kragt, M.E., Ostermann, F.O., Pierce, S.A., Ramu, P. 2016. Modelling with stakeholders – Next generation. Environmental Modelling & Software, 77, Pages 196-220. https://doi.org/10.1016/j.envsoft.2015.11.016

Whitfield, A.K. 2017. The Role of Seagrass Meadows, Mangrove Forests, Salt Marshes and Reed Beds as Nursery Areas and Food Sources for Fishes In Estuaries. Rev Fish Biol Fisheries 27, 75–110. https://doi.org/10.1007/s11160-016-9454-x

Xu, S., Xu, S., Zhou, Y., Yue, S., Qiao, Y., Liu, M., Gu, R., Song, X., Zhang, Y., Zhang, X. 2020. Sonar and in Situ Surveys of Eelgrass Distribution, Reproductive Effort, and Sexual Recruitment Contribution in a Eutrophic Bay With Intensive Human Activities: Implication for Seagrass Conservation. Marine Pollution Bulletin, 161, 111706, https://doi.org/10.1016/j.marpolbul.2020.111706

Zhang, X., Fichot, C.G., Baracco, C., Guo, R., Neugebauer, S., Bengtsson, Z., Ganju, N., Fagherazzi, S. 2020. Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing. Remote Sensing of Environment, 240, 111682. https://doi.org/10.1016/j.rse.2020.111682

Zhao, B., Zhong, Y., Xia, G.S., and Zhang, L. 2016. Dirichlet-Derived Multiple Topic Scene Classification Model for High Spatial Resolution Remote Sensing Imagery," in IEEE Transactions on Geoscience and Remote Sensing, 54(4): 2108-2123. DOI: 10.1109/TGRS.2015.2496185

Zimmerman, R.C. 2021. Scaling up: Predicting the Impacts of Climate Change on Seagrass Ecosystems. Estuaries and Coasts 44, 558–576. https://doi.org/10.1007/s12237-020-00837-7



DOI: https://doi.org/10.22146/ijg.82259

Article Metrics

Abstract views : 1043 | views : 469

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Dwi Rosalina

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC