The Impact of Land Use Change on Groundwater Depth in The Groundwater Transition Zone of Merapi Volcano, Yogyakarta, Indonesia

Sadewa Purba Sejati(1*), Rivi Neritarani(2)

(1) Faculty of Science and Technology, Universitas Amikom Yogyakarta, Indonesia
(2) Faculty of Science and Technology, Universitas Amikom Yogyakarta, Indonesia
(*) Corresponding Author


Studies of the impact of land use change on groundwater on the southern slopes of Merapi Volcano tend to be carried out on a macro basis. Micro studies, especially in groundwater transition zones,  have not been previously conducted. In-depth studies need to be undertaken in the groundwater transition zone on the southern slope of Merapi Volcano to identify the impact of land use change on the dynamics of groundwater depth in 2012-2021. Data was collected through field surveys and remote sensing. Groundwater depth data were collected through field surveys in 2012 and 2021. Groundwater depth data were measured in dug wells. The location of the excavated well was determined by using the systematic random sampling method. Groundwater depth data were analyzed using the kriging spatial interpolation method. The results of groundwater depth interpolation in 2012 and 2021 were then compared to determine the changes. Rainfall data were also used in the study. Rainfall data were collected using remote sensing data through cloud computing. Literature studies related to the condition of monitoring wells were also used to determine groundwater dynamics based on rainfall conditions. Data on land use change for 2012-2021 were collected using remote sensing data. Land use change was analyzed using pansharpening, supervised classification, and overlay methods. Cross-tabulation analysis was performed to determine the impact of land use change on groundwater depth. The groundwater depths in the study area were classified into <6 m, 6-11 m, and >11 m. Changes in land use from irrigated rice fields to settlements and open land to scrub occurred predominantly in the study area. Changes in land use did not have a significant impact on changes in groundwater depth in the study area. Based on cross-tabulation analysis, it is known that 11.46% of the study area experienced groundwater deepening, 7.73% experienced groundwater siltation, and 80.81% experienced no change in groundwater depth in the period of 2012-2021. Groundwater deepening generally occurs in areas dominated by scrub and settlements far from river channels. Groundwater that grows shallower and does not change in depth occurs around irrigated rice fields close to river channels. Land use change that does not significantly impact groundwater depth is likely to occur because rainfall in the study area is high. The aquifer material in the study area also had an excellent ability to drain groundwater coming from the upper slopes of Merapi Volcano.


land use change; groundwater level; fluctuation; Merapi Volcano

Full Text:



Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egyptian Journal of Remote Sensing and Space Science, 18(2), 251–259.

El Garouani, M., Radoine, H., Lahrach, A., & Jarar Oulidi, H. (2023). Spatiotemporal Analysis of Groundwater Resources in the Saïss Aquifer, Morocco. Water (Switzerland), 15(1).

Fayaz, A., Shafiq, M., Singh, H., & Ahmed, P. (2020). Assessment of spatiotemporal changes in land use / land cover of North Kashmir Himalayas from 1992 to 2018. Modeling Earth Systems and Environment, June, 1–13.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data, 2, 1–21.

Gebeyehu, A. E., Chunju, Z., & Yihong, Z. (2019). Assessment and mapping of land use change by remote sensing and GIS: A Case Study of Abaya Chamo Sub-basin, Ethiopia. Nature Environment and Pollution Technology, 18(2), 549–554.

Ghazavi, R., & Ebrahimi, H. (2016). Impacts of land-use change on groundwater resources using remote sensing and numerical modeling. Journal of Biodiversity and Environmental Sciences, 9(4), 149–157.

Hendrayana, H., Harijoko, A., Riyanto, I. A., Nuha, A., & Ruslisan. (2023). Groundwater Chemistry Characterization in The South and Southeast Merapi Volcano, Indonesia. Indonesian Journal of Geography, 55(1), 10–29.

Hendrayana, H., Nuha, A., Riyanto, I. A., & Aprimanto, B. (2021). Kajian Perubahan Muka Airtanah di Cekungan Airtanah Yogyakarta-Sleman. Majalah Geografi Indonesia, 35(1), 30–44.

Hendrayana, H., & Vicente, V. A. de S. (2013). Cadangan Airtanah Berdasarkan Geometri dan Konfigurasi Sistem Akuifer Cekungan Airtanah Yogyakarta-Sleman. Prosiding Seminar Nasional Kebumian Ke-6, 356–370.

Hussin, N. H., Yusoff, I., & Raksmey, M. (2020). Comparison of applications to evaluate groundwater recharge at lower Kelantan river basin, Malaysia. Geosciences (Switzerland), 10(8), 1–25.

Jain, S., Tiwari, V., Thapa, A., Mangla, R., Jaiswal, R. K., Kumar, V., Tiwari, S., Tulbure, M. G., Galkate, R., Lohani, A. K., & Pandey, K. (2022). Performance Evaluation of Google Earth Engine Based Precipitation Datasets Under Different Climatic Zones over India. Remote Sensing in Earth Systems Sciences, 5(4), 263–276.

Karimian, K., Amini, A., & Ghaiumi Mohammadi, H. (2019). The Impact of Land Use/Land Cover Changes on Groundwater Resources Using Remote Sensing & GIS (Case Study: Khan-Mirza Plain). Desert, 24(2), 319–330.

Kumar, P. J. S. (2022). GIS-based mapping of water-level fluctuations (WLF) and its impact on groundwater in an Agrarian District in Tamil Nadu, India. Environment, Development and Sustainability, 24(1), 994–1009.

Kumar, S., Gupta, S., Sinha, R., Logan, A., Prakash, S., Shekhar, S., Mason, P. J., & Dijk, W. M. Van. (2021). Strongly Heterogeneous Patterns of Groundwater Depletion in Northwestern India. Journal of Hydrology, 598(May), 126492.

Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2011). Geographic Information Science and Systems. John Wiley and Son Inc.

Manny, L., Atmaja, R. R. S., & Putra, D. P. E. (2016). Groundwater Level Changes in Shallow Aquifer of Yogyakarta City , Indonesia : Distribution and Causes. Journal of Applied Geology, 1(2), 89–99.

Masoud, A. A., Koike, K., Mashaly, H. A., & Gergis, F. (2016). Spatio-temporal trends and change factors of groundwater quality in an arid area with peat rich aquifers : Emergence of water environmental problems in Tanta District , Egypt. Journal of Arid Environments, 124, 360–376.

Mishra, N., Khare, D., Gupta, K. K., & Shukla, R. (2014). Impact of land use change on groundwater ‐ a review. Advances in Water Resource Dan Protection, 2(2), 28–41.

Neritarani, R., & Sejati, S. P. (2021). The Impact of Rapid Urban Growth on Potential Groundwater Pollution in Ngemplak Sub-District, Sleman District. Jurnal Wilayah Dan Lingkungan, 9(2), 198–212.

Nofrita, S., & Krol, B. G. C. M. B. (2014). The Livelihood Analysis in Merapi Prone Area After 2010 Eruption. Indonesian Journal of Geography, 46(2), 195.

Ochuko, D., & Lecturer, S. (2015). Change Detection in Landuse / Landcover Mapping in Asaba, Niger Delta B/W 1996 and 2015. a Remote Sensing and Gis Approach. British Journal of Environmental Sciences, 3(3), 42–61.

Oiro, S., Comte, J., Soulsby, C., Macdonald, A., & Mwakamba, C. (2020). Depletion of Groundwater Resources Under Rapid Urbanisation in Africa : Recent and Future Trends in the Nairobi Aquifer System , Kenya. Hydrogeology Journal, 2020(28), 2635–2656.

Purawantara, S., Suprayogi, S., Hadi, M. P., & Purnama, I. L. S. (2019). The Impact of Land Use Change on Water Resources in The Southern Foot Plain of Merapi. Southeast Asian Geography Association (SEAGA) 13 Th Conference.

Purwantara, S., Suprayogi, S., Pramono Hadi, M., & Setyawan Purnama, I. L. (2019). The Impact of Land Use Change on Water Resources in the Southern Foot Plain of Merapi. IOP Conference Series: Earth and Environmental Science, 338(1), 0–8.

Razi, M. H., Wilopo, W., & Eka Putra, D. P. (2023). Spatiotemporal analysis of groundwater level trends and recharge rate estimation in the unconfined aquifer of Yogyakarta-Sleman Groundwater Basin, Indonesia. Journal of Degraded and Mining Lands Management, 11(1), 4887–4897.

Riasasi, W., & Sejati, S. P. (2019). Potential of Groundwater to Supply Domestic Water Necessity in Evacuation Shelters of Merapi Volcano Eruption. IOP Conference Series: Earth and Environmental Science, 1–11.

Sajjad, M. M., Wang, J., Abbas, H., Ullah, I., Khan, R., & Ali, F. (2022). Impact of Climate and Land-Use Change on Groundwater Resources, Study of Faisalabad District, Pakistan. Atmosphere, 13(7), 1–15.

Sejati, S. P. (2019). Perbandingan Akurasi Metode IDW dan Kriging dalam Pemetaan Muka Air Tanah. Majalah Geografi Indonesia, 33(2), 49–57.

Sejati, S. P. (2020). Potensi pencemaran air tanah bebas pada sebagian kawasan resapan air di Lereng Selatan Gunung Api Merapi. Jurnal Pendidikan Geografi: Kajian, Teori, Dan Praktik Dalam Pendidikan Dan Ilmu Geografi, 25(01), 25–38.

Sejati, S. P. (2021). Tingkat Fluktuasi Air Tanah pada Jangka Pendek di Kecamatan Ngemplak, Kabupaten Sleman, Provinsi Daerah Istimewa Yogyakarta. Jurnal Teknologi Lingkungan, 22(1), 121–129.

Sejati, S. P., & Adji, T. N. (2013). Kajian potensi air tanah di lereng selatan Gunung Api Merapi untuk mencukupi kebutuhan domestik pada hunian sementara. Universitas Gadjah Mada.

Sejati, S. P., & Prayoga, R. E. (2023). Analysis on unconfined groundwater availability during dry and rainy season using dynamic approach in Ngemplak, Sleman, Yogyakarta, Indonesia. Jurnal Pendidikan Geografi: Kajian,Teori, Praktik Dalam Bidang Pendidikan Dan Ilmu Geografi, 28(1), 38–51.

Seyedmohammadi, J., Esmaeelnejad, L., & Shabanpour, M. (2016). Spatial Variation Modeling of Groundwater Electrical Conductivity Using Geostatistics and GIS. Modeling Earth Systems and Environment, 2(4), 1–10.

Siddik, M. S., Tulip, S. S., Rahman, A., Islam, M. N., Haghighi, A. T., & Mustafa, S. M. T. (2022). The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. Journal of Environmental Management, 315(April), 1–19.

Steward, D. R., & Allen, A. J. (2016). Peak Groundwater Depletion in the High Plains Aquifer, Projections from 1930 to 2110. Agricultural Water Management, 17, 36–48.

Wang, Y., Victor, O., & Zhao, T. (2017). Interpolation of spatially varying but sparsely measured geo-data : A comparative study. Engineering Geology, 231(October), 200–217.

Widodo, D. R. (2015). Penggunaan Sistem Informasi Geografi untuk Mengetahui Perubahan Penggunaan Lahan Permukiman dan Dampak Letusan Gunung Merapi di Kecamatan Cangkringan. 135–139.

Wilopo, W., Putra, D. E. P., & Hendrayana, H. (2021). Impacts of precipitation , land use change and urban wastewater on groundwater level fluctuation in the Yogyakarta-Sleman Groundwater Basin , Indonesia. Environmental Monitoring and Assessment, 193(76), 1–14.


Article Metrics

Abstract views : 1738 | views : 189


  • There are currently no refbacks.

Copyright (c) 2024 Sadewa Purba Sejati, Rivi Neritarani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)