Comparing Master Recession Curves using Seven Baseflow Recession Models
Bokiraiya Latuamury(1*)
(1) Department of Forestry, Pattimura University, Ambon-Maluku, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Aksoy, H., & Wittenberg, H. (2011). Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2011.553614
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., & Appendini, C. M. (2017). Hydrorecession: A Matlab toolbox for streamflow recession analysis. Computers and Geosciences. https://doi.org/10.1016/j.cageo.2016.10.005
Basha, H. A. (2020). Flow Recession Equations for Karst Systems. Water Resources Research, 56(7), 1–21. https://doi.org/10.1029/2020WR027384
Biswal, B., & Marani, M. (2010). Geomorphological origin of recession curves. Geophysical Research Letters, 37(24), 1–5. https://doi.org/10.1029/2010GL045415
Biswal, B., & Marani, M. (2014). “Universal” recession curves and their geomorphological interpretation. Advances in Water Resources, 65, 34–42.
Boussinesq, J. (1877). boussinesq1877essai : Essai sur la theorie des eaux courantes. Impr. nationale.
Brutsaert, W., & Nieber, J. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resources Research, 13(3), 637–643.
Carlotto, T., & Chaffe, P. L. B. (2019). Computers and Geosciences Master Recession Curve Parameterization Tool ( MRCPtool ): Different approaches to recession curve analysis. Computers and Geosciences, 132(February), 1–8. https://doi.org/10.1016/j.cageo.2019.06.016
Chapmann, T. (1999). A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13(5), 701–714. https://doi.org/https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
Fatchurohman, H., Adji, T. N., Haryono, E., & Wijayanti, P. (2018). Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu. IOP Conference Series: Earth and Environmental Science, 148(1). https://doi.org/10.1088/1755-1315/148/1/012029
Gou, J., Miao, C., Duan, Q., Tang, Q., Di, Z., Liao, W., Wu, J., & Zhou, R. (2020). Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China. Water Resources Research, 56(1), 1–19. https://doi.org/10.1029/2019WR025968
Gregor, M. & Malík, P. (2012). User manual for Recession Curve 4.0. Version 2, 1–8.
Gregor, M., & Malík, P. (2012). Construction of master recession curve using genetic algorithms. Journal of Hydrology and Hydromechanics. https://doi.org/10.2478/v10098-012-0001-8
Gregor, M., & Malík, P. (2014). Using Hybrid Genetic Algorithms in Assembling Master Recession Curves of Karst Springs. In H2Karst Research in Limestone Hydrogeology. https://doi.org/10.1007/978-3-319-06139-9_6
Hammond, M., & Han, D. (2006). Recession curve estimation for storm event separations. Journal of Hydrology, 330(3–4), 573–585. https://doi.org/10.1016/j.jhydrol.2006.04.027
Hannah, D. M., & Gurnell, A. M. (2001). A conceptual, linear reservoir runoff model to investigate melt season changes in cirque glacier hydrology. Journal of Hydrology, 246(1–4), 123–141. https://doi.org/10.1016/S0022-1694(01)00364-X
Harman, C. J., Sivapalan, M., & Kumar, P. (2009). Power law catchment-scale recessions arising from heterogeneous linear small-scale dynamics. Water Resources Research, 45(9), 1–13. https://doi.org/10.1029/2008WR007392
Heppner, C. S., & Nimmo, J. R. (2005). A Computer Program for Predicting Recharge with a Master Recession Curve. 8.
Latuamury, B., Marasabessy, H., Talaohu, M., & Imlabla, W. (2021). Small island watershed morphometric and hydrological characteristics in Ambon Region, Maluku Province. IOP Conference Series: Earth and Environmental Science, 800(1), 0–15. https://doi.org/10.1088/1755-1315/800/1/012047
Latuamury, B., Parera, L. R., & Marasabessy, H. (2020). Characterizing river baseflow recession using linear reservoir model in Alang Watershed, Central Java, Indonesia. Indonesian Journal of Geography, 52(1). https://doi.org/10.22146/ijg.43565
Latuamury, B., Imlabla, W. N., Sahusilawane, J. F., & Marasabessy, H. (2023). One-Way ANOVA Test of Five Digital Filter Recursive Graphic Methods in Baseflow Separation on Wae Tomu Watershed Ambon City. AIP Conference Proceedings, 2588. https://doi.org/10.1063/5.0111720
Latuamury, B., Imlabla, W., Sahusilawane, J., & Marasabessy, H. (2022). Comparing Master Recession Curve Shapes Between Linear and Exponential Reservoir Models. Journal of Geographical Studies, 6(2), 68–72. https://doi.org/10.21523/gcj5.22060202
Lázaro, J. M., Ángel, J., Navarro, S., Gil, A. G., & Romero, V. E. (2015). A new adaptation of linear reservoir models in parallel sets to assess actual hydrological events. Journal of Hydrology, 524, 507–521. https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.03.009
Lee, G., Shin, Y., & Jung, Y. (2014). Development of web-based RECESS model for estimating baseflow using SWAT. Sustainability (Switzerland), 6(4), 2357–2378. https://doi.org/10.3390/su6042357
Maillet, E. (1905). Essais d’Hydraulique Souterraine et Fluviale. In Hermann Paris (p. 218).
Nurkholis, A., Adji, T. N., Haryono, E., Cahyadi, A., Waskito, W. A., Fathoni, H., Kurniawan, I. A., & Agniy, R. F. (2019). Analysis of Master Recession Curve (MRC) and flood hydrograph components for karstification degree estimation in Kiskendo Cave, Jonggrangan Karst System, Indonesia. IOP Conference Series: Earth and Environmental Science, 256(1). https://doi.org/10.1088/1755-1315/256/1/012011
Posavec, K., Bačani, A., & Nakić, Z. (2006). A visual basic spreadsheet macro for recession curve analysis. Ground Water, 44(5), 764–767. https://doi.org/10.1111/j.1745-6584.2006.00226.x
Posavec, K., Parlov, J., & Nakić, Z. (2010). Fully automated objective-based method for master recession curve separation. Ground Water, 48(4), 598–603. https://doi.org/10.1111/j.1745-6584.2009.00669.x
Rivera-Ramírez, H. D., Warner, G. S., & Scatena, F. N. (2002). Prediction of master recession curves and baseflow recessions in the Luquillo mountains of Puerto Rico. Journal of the American Water Resources Association, 38(3), 693–704. https://doi.org/10.1111/j.1752-1688.2002.tb00990.x
Shaw, S. B., McHardy, T. M., & Riha, S. J. (2013). Evaluating the influence of watershed moisture storage on variations in base flow recession rates during prolonged rain-free periods in medium-sized catchments in New York and Illinois, USA. Water Resources Research, 49(9), 6022–6028. https://doi.org/10.1002/wrcr.20507
Shaw, S. B., & Riha, S. J. (2012). Examining individual recession events instead of a data cloud: Using a modified interpretation of dQ/dt-Q streamflow recession in glaciated watersheds to better inform models of low flow. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2012.02.034
Stewart, M. K. (2015). Promising new baseflow separation and recession analysis methods applied to streamflow at Glendhu Catchment, New Zealand. Hydrology and Earth System Sciences, 19(6), 2587–2603. https://doi.org/10.5194/hess-19-2587-2015
Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really characteristic? Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-17-817-2013
Sujono, J., Shikasho, S., & Hiramatsu, K. (2004). A comparison of techniques for hydrograph recession analysis. Hydrological Processes, 18(3), 403–413. https://doi.org/10.1002/hyp.1247
Szilagyi, J., Gribovszki, Z., & Kalicz, P. (2007). Estimation of catchment-scale evapotranspiration from baseflow recession data: Numerical model and practical application results. Journal of Hydrology, 336(1–2), 206–217. https://doi.org/10.1016/j.jhydrol.2007.01.004
Szilagyi, J., & Parlange, M. B. (1998). Baseflow separation based on analytical solutions of the Boussinesq equation. Journal of Hydrology, 204(1–4), 251–260. https://doi.org/10.1016/S0022-1694(97)00132-7
Tallaksen, L. (1995). A review of baseflow recession analysis. Journal of Hydrology, 165(1–4), 349–370. https://doi.org/10.1016/0022-1694(95)92779-d
Tashie, A., Pavelsky, T., & Band, L. E. (2020). An Empirical Reevaluation of Streamflow Recession Analysis at the Continental Scale. Water Resources Research, 56(1), 1–18. https://doi.org/10.1029/2019WR025448
Tashie, A., Pavelsky, T., & Emanuel, R. E. (2020). Spatial and Temporal Patterns in Baseflow Recession in the Continental United States. Water Resources Research, 56(3), 1–18. https://doi.org/10.1029/2019WR026425
Thomas, B. F., & Vogel, R. M. (2015). Baseflow Recession Analysis : Testing the Nonlinear Reservoir Hypothesis. Tufts University, January, 2011.
Thomas, B. F., Vogel, R. M., & Famiglietti, J. S. (2015). Objective hydrograph baseflow recession analysis. JOURNAL OF HYDROLOGY, 525, 102–112. https://doi.org/10.1016/j.jhydrol.2015.03.028
Vogel, R.M. & Kroll, C. N. (1996). Estimation of baseflow recession constants. Water Resources Management. https://doi.org/10, pages303–320(1996)
Ward, A. S., Fitzgerald, M., Gooseff, M. N., Voltz, T. J., Binley, A. M., & Singha, K. (2012). Correction to “hydrologic and geomorphic controls on hyporheic exchange during baseflow recession in a headwater mountain stream.” Water Resources Research, 48(8), 12663. https://doi.org/10.1029/2012WR012663
Wittenberg, H., & Sivapalan, M. (1999). Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology, 219(1–2), 20–33. https://doi.org/10.1016/S0022-1694(99)00040-2
DOI: https://doi.org/10.22146/ijg.89691
Article Metrics
Abstract views : 430 | views : 412Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Bokiraiya Latuamury
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)
ISSN 2354-9114 (online), ISSN 0024-9521 (print)
IJG STATISTIC