Volume Estimation of the Thickest Scoriaceous Tephra-Fall Deposits on the South-Southeastern Flank of Mt. Raung

https://doi.org/10.22146/jag.80866

Haryo Edi Wibowo(1), Agung Harijoko(2*), Sherinna Mega Cahyani(3), Mradipta Lintang Alifcanta Moktikanana(4), Shafa Hadaina Prawira Sari(5)

(1) Department of Geological Engineering Universitas Gadjah Mada
(2) Department of Geological Engineering Universitas Gadjah Mada
(3) Department of Geological Engineering Universitas Gadjah Mada
(4) Departement of Earth Resource Science Graduate School of International Resource Sciences, Akita University
(5) Department of Geological Engineering Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Thick scoriaceous tephra-fall deposits are widely distributed in the south to the southeast flank of Mt. Raung, indicating the existence of past large explosive eruptions. The deposits are relatively young as the deposits are situated near the surface. Scoriaceous tephra-fall deposits can be divided into four layers from bottom to top, Scoria Fall 1, Scoria Fall 2, Scoria Fall 3, and Scoria Fall 4. There is no time gap between these layers, as evidenced by the deposits not being separated by any weathered layer or soil, suggesting that the deposits represent an eruptive product of a single active period. We estimated the volume of the deposits using isopach maps following Weibull method to identify the magnitude of the eruption. We limited the estimation only to Scoria Fall 2 and Scoria Fall 3 deposits which were consistently exposed on 13 and 9 observation points, respectively. The volume of Scoria Fall 2 is ~0.54 km3 and Scoria Fall 3 is ~0.26 km3 making the total volume of 0.8 km3 (VEI 4).

Keywords


Mt. Raungscoria fall ∙ tephra-fall deposits ∙ volcanic explosivity index ∙ volume estimation.

Full Text:

PDF


References

Badan Informasi Geospasial. (2018). DEMNAS: Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. https://tanahair.indonesia.go.id/demnas/#/. Bonadonna, C., & Costa, A. (2012). Estimating the volume of tephra deposits: A new simple strategy. Geology, 40(5), 415–418. https://doi.org/10.1130/G32769.1 Bonadonna, Costanza, & Costa, A. (2013). Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bulletin of Volcanology, 75(8), 1–19. https://doi.org/10.1007/s00445-013-0742-1 Bonadonna, Costanza, & Houghton, B. F. (2005). Total grain-size distribution and volume of tephra-fall deposits. Bulletin of Volcanology, 67(5), 441–456. https://doi.org/10.1007/s00445-004-0386-2 Bronto S. (2010). Geologi Gunung Api Purba. Geological Agency of the Ministry of Energy and Mineral Resources. Burden, R. E., Chen, L., & Phillips, J. C. (2013). A statistical method for determining the volume of volcanic fall deposits. Bulletin of Volcanology, 75(6), 1–10. https://doi.org/10.1007/s00445-013-0707-4 Cas, R. A. F., & Wright, J. V. (1987). Volcanic Successions Modern and Ancient: a geological approach to processes, products and successions. In Volcanic Successions Modern and Ancient: a geological approach to processes, products and successions. Center of Vulcanology and Geological Hazard Mitigation. (2014). Data Dasar Gunung Api Raung. http://www.vsi.esdm.go.id/index.php/gunungapi/data-dasar-gunungapi/526-g-raung CGIAR-Consortium for Spatial Information. (2018). SRTM 90-m DEM Digital Elevation Database. https://srtm.csi.cgiar.org/ Daggitt, M. L., Mather, T. A., Pyle, D. M., & Page, S. (2014). AshCalc-a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. Journal of Applied Volcanology, 3(1), 1–8. https://doi.org/10.1186/2191-5040-3-7 Engwell, S. L., Aspinall, W. P., & Sparks, R. S. J. (2015). An objective method for the production of isopach maps and implications for the estimation of tephra deposit volumes and their uncertainties. Bulletin of Volcanology, 77(7). https://doi.org/10.1007/s00445-015-0942-y Engwell, S. L., Sparks, R. S. J., & Aspinall, W. P. (2013). Quantifying uncertainties in the measurement of tephra fall thickness. Journal of Applied Volcanology, 2(1). https://doi.org/10.1186/2191-5040-2-5 Global Volcanism Program. (2013, November). Raung (263340) in [Database] Volcanoes of the World. https://volcano.si.edu/volcano.cfm?vn=263340 Klawonn, M., Houghton, B. F., Swanson, D. A., Fagents, S. A., Wessel, P., & Wolfe, C. J. (2014a). Constraining explosive volcanism: Subjective choices during estimates of eruption magnitude. Bulletin of Volcanology, 76(2), 1–6. https://doi.org/10.1007/s00445-013-0793-3 Klawonn, M., Houghton, B. F., Swanson, D. A., Fagents, S. A., Wessel, P., & Wolfe, C. J. (2014b). From field data to volumes: Constraining uncertainties in pyroclastic eruption parameters. Bulletin of Volcanology, 76(7), 1–16. https://doi.org/10.1007/s00445-014-0839-1 Newhall, C. G., & Self, S. (1982). The volcanic explosivity index ( VEI): an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87(C2), 1231–1238. https://doi.org/10.1029/jc087ic02p01231 Pyle, D. M. (1989). The thickness, volume and grainsize of tephra fall deposits. Bulletin of Volcanology, 51(1), 1–15. https://doi.org/10.1007/BF01086757 Sparks, R. S. J. (1986). The dimensions and dynamics of volcanic eruption columns. Bulletin of Volcanology, 48(1), 3–15. https://doi.org/10.1007/BF01073509 Sutawidjaja, I. S., Suparman, Sitorus, K. (1996). Geological Map of Raung Volcano, East Java. Vulcanological Survey of Indonesia.



DOI: https://doi.org/10.22146/jag.80866

Article Metrics

Abstract views : 1000 | views : 333

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Haryo Edi Wibowo, Agung Harijoko, Sherinna Mega Cahyani, Mradipta Lintang Alifcanta Moktikanana, Shafa Hadaina Prawira Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Applied Geology Indexed by:

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.