Growth Characteristics of Tetraselmis sp. and Nannochloropsis sp.

https://doi.org/10.22146/jfs.10749

Muhammad Fakhri(1*), Nasrullah B. Arifin(2)

(1) Aquaculture. Faculty of Fisheries and Marine Science, Brawijaya University, Malang.
(2) Fish Nutrition Laboratory, Faculty of Fisheries and Marine Science, Brawijaya University, Malang.
(*) Corresponding Author

Abstract


Monitoring of microalgae growth (Tetraselmis sp. and Nannochloropsis sp.) is one of the essential factors in fish and shrimp cultures. The purpose of this study was to determine the growth characteristics of Tetraselmis sp. and Nannochloropsis sp. by measuring optical density using spectrophotometry method. Absorbance of 600 nm was used for both species. The results showed that the maximum growth was achieved at day 6 for both microalgae with OD value of 1.734±0.013 and 1.329±0,002 for Tetraselmis sp. and Nannochloropsis sp., respectively. Tetraselmis sp. had a maximum growth rate of 0.74/day and doubling time of 22.43 hours while Nannochloropsis sp. had a maximum growth rate of 0.86/day and doubling time of 19.25 hours. This study shows that absorbance of 600 nm is suitable for determine the growth of green microalgae and spectrophotometry method can be used efficiently to monitor microalgal growth.

 

Keywords


doubling time; growth rate; microalgae; optical density; spectrophotometry

Full Text:

PDF


References

Alsull, M. & W. Omar. 2012. Responses of Tetraselmis sp. and Nannochloropsis sp. isolated from Penang National Park Coastal Waters, Malaysia, to the combined influences of salinity, light and nitrogen limitation. International Conference on Chemical, Ecology and Environmental Sciences, Bangkok, pp. 142-145

Barsanti, L. & P. Gualtieri. 2010. Algae : Anatomy, Biochemistry and Biotechnology. Taylor and Francis Group. CRC Press. pp. 347.

Borowitzka, M.A. 1997. Algae for aquaculture: Opportunities and constraints. Journal of Applied Phycology. 9: 393-401.

Brown, M. & R. Robert. 2002. Preparation and assessment of microalgal concentrates as feeds for larval and juvenile pacific oyster (Crassostrea gigas). Aquaculture. 207: 289–309.

Brown, M.R., S.W. Jeffrey, J.K. Volkman & G.A. Dunstan. 1997. Nutritional properties of microalgae for mariculture. Aquaculture. 151(1-4): 315–331.

Camacho-Rodríguez, J., M.C. Cerón-García, C.V. González-López, J.M. Fernández-Sevilla, A. Contreras-Gómez & E. Molina-Grima. 2013. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresource Technology. 144: 57-66.

Fakhri, M., N.B. Arifin, B. Budianto, A. Yuniarti & A.M Hariati. 2015. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nature Environment and Pollution Technology.14(3): 563-566.

Fogg, G. E. & B. Thake. 1987. Algal Cultures and Phytoplankton Ecology. The University of Wiconsin Press. 219 pp.

Freire, I., A. Cortina-Burgueño, P. Grillea, M.A. Arizcun, E. Abellán, M. Segura, F.W. Sousa & A. Otero. 2016. Nannochloropsis limnetica: A freshwater microalga for marine aquaculture. Aquaculture. 459:124-130.

Guedes, A.C. & F.X. Malcata. 2012. Nutritional value and uses of microalgae in aquaculture.In: Muchlisin, Z.A. (ed.), Aquaculture, InTech, Croatia. pp. 59-78.

Havlik, I., P. Lindner, T. Scheper & K.F. Reardon. 2013. On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnology. 31(7): 406–414.

Hermawan, A. 2004. The protein, lipid and fatty acids contents of Tetraselmis sp. with various culture media. Tesis. Kasetsart University, Thailand.

Khoeyi, Z.A., Seyfabadi J. & Z. Ramezanpour. 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International. 20: 41‒49. 

Michels, M.H.A., P.M. Slegers, M.H. Vermue & R.H. Wijffels. 2014. Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight. Algal Research. 4: 12-18.

Pal, D., I. Khozin-Goldberg, Z. Cohen & S. Boussiba. 2011. The effect of light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbiology and Biotechnology. 90: 1429–1441.

Ribeiro-Rodrigues, L.H., A. Arenzon, M.T. Raya-Rodriguez & N.F. Fontoura. 2011. Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. Journal of Environmental Chemistry and Ecotoxicology. 3(8): 225-228.

Sevigné-Itoiz, E., C. Fuentes-Grünewald, C.M. Gasol, E. Garcés, E. Alacid, S. Rossi & J. Rieradevall. 2012. Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy. 39: 324-335.

Sirakov, I., K. Velichkova, S. Stoyanova & Y. Staykov. 2015. The importance of microalgae for aquaculture industry. Review. International Journal of Fisheries and Aquatic Studies. 2(4): 81-84.

Wang, D., Y. Li, X. Hu, W. Su & M. Zhong. 2015. Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. International Journal of Molecular Sciences.16: 7707-7722.

Wang, L., M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang & R. Ruan. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology.162(4): 1174-1186.

Yaakob, Z., E. Ali, A. Zainal, M. Mohamad & M.S.Takriff. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research. 21: 1-10.



DOI: https://doi.org/10.22146/jfs.10749

Article Metrics

Abstract views : 1373 | views : 3141

Refbacks

  • There are currently no refbacks.




Copyright (c) 2016 Journal of Fisheries Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perikanan Universitas Gadjah Mada Indexed by:

 

 

View My Stats