Agarolytic Bacillus sp. FRAgK1 Screened from Gracilaria (Rhodophyta) Thallus as Probiotic Candidate for Abalone

https://doi.org/10.22146/jfs.93662

Faisal Zain Abdullah(1), Indah Istiqomah(2*), Alim Isnansetyo(3), Ngurah Sedana Yasa(4), Norshida Ismail(5)

(1) Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Sleman Regency, Special Region of Yogyakarta
(2) Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Sleman Regency, Special Region of Yogyakarta
(3) Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Sleman Regency, Special Region of Yogyakarta
(4) Research Center for Fisheries, National Agency for Research and Innovation (BRIN), Bogor, West Java
(5) School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry. Universiti Sultan Zainal Abidin, Terengganu
(*) Corresponding Author

Abstract


Agarolytic bacteria produce agarase, which may aid in the growth of cultured tropical abalone fed natural seaweed. Agarolytic bacteria can come from a variety of sources, such as seawater, abalone intestines, and dead seaweed. This study aimed to isolate, screen, describe, and identify agarolytic bacteria found in red macroalgae. Agarolytic bacteria isolated from Gracillaria segregated from the substrate at Drini Beach, Gunungkidul Regency, were qualitatively described using the agarolytic index, antibiotic susceptibility, acid resistance (pH 4), and safety test. We collected seven agarolytic isolates. FRAgK1 isolate had the highest agarolytic index, was sensitive to antibiotics, resistant to low pH conditions, and non-pathogenic to finfish, making it suitable for use as gut probiotics in abalone. The bacterium was short rod-shaped, Gram-positive, non-motile, lacked catalase and indol, and was unable to ferment lactose or sucrose. The 16S rRNA gene sequence of FRAgK1 was most similar to Bacillus subtilis, however only by 99.43%.


Keywords


Abalone; agarolytic; Bacillus; probiotic;16S rRNA



References

AlGburri, A., A. Volski, C. Cugini, E.M. Walsh, V.A. Chistyakov, M.S. Mazanko, A.B. Bren, L.M.T. Dicks & M.L. Chikindas. 2016. Safety properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Advances in Microbiology. 6 (6): 432-452. http://dx.doi.org/10.4236/aim.2016.66043

Amin, M., C.J.S. Bolch, M.B. Adams & C.M. Burke. 2020. Growth enhancement of tropical abalone, Haliotis asinina L, through probiotic supplementation. Aquaculture International. 28: 463-475. https://doi.org/10.1007/s10499-019-00473-4

Andriani, Y., R. Fitri, E. Rochima & S.D. Fakhrudin. 2017. Characterization of Bacillus subtilis and B. licheniformis potentials as probiotic bacteria in vanamei shrimp feed (Litopenaeus vannamei Boone, 1931). Nusantara Bioscence. 9 (2): 188-193. https://doi.org/10.13057/nusbiosci/n090214

Anggraeni, S.R & M.B. Ansorge-Schumacher. 2021. Characterization and modeling of thermostable GH50 agarases from Microbulbifer elongatus PORT2. Marine Biotechnology. 23 (5): 809-820. https://doi.org/10.1007%2Fs10126-021-10065-0

Borriss, R. 2020. Chapter 7: Bacillus. Beneficial Microbes in Agro-Ecology. 107-132. https://doi.org/10.1016/B978-0-12-823414-3.00007-1

Chi, W-J., J-H. Lim, D.Y. Park, M-C. Kim, C-J. Kim, Y-K. Chang & S-K. Hong. 2013. Isolation and characterization of a novel agar degrading bacterium, Alteromonas macleodii subsp GNUM08120 from red macroalgae. Korean J. Microbiol. Biotechnol. 41 (1): 8-16.

Chi, W-J., Y-K. Chang & S-K. Hong. 2012 Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94 (4): 917-930. https://doi.org/10.1007/s00253-012-4023-2

Chiura, H.X & K. Kita-Tsukamoto. 2000. Purification and characterisation of a novel agarase secreted by a marine bacterium Pseudoalteromonas sp. strain CKT1. Microbes and Environment. 15 (1): 11-22. https://doi.org/10.1264/jsme2.2000.11

Clinical and Laboratory Standards Institute. 2015. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standards, 12th edition CLSI Document M02-A12 35 (1). Clinical and Laboratory Standards Institute, Pennsylvania.

Cruz, P.M., A.L. Ibanez, O.A.M. Hermosillo & H.C.R. Saad. 2012 Use of Probiotics in Aquaculture. Review Article ISRN Microbiology. 16: 916845. 1-13. https://doi.org/10.5402/2012/916845

Damayanti, D., D.S. Yusup & I. Rusdi. 2018. Pengaruh pemberian pakan beberapa alga makro (Ulva sp., Gracilaria sp., Halymenia sp.) terhadap pertumbuhan abalon Haliotis squamata. Jurnal Metamorfosa. 5 (2): 189-197. https://doi.org/10.24843/metamorfosa.2018.v05.i02.p08

Dwi, E.D.S & A.K. Hollanda. 2023. An overview of the Indonesian abalone industry: Production, market, challenges, and opportunities. BIO Web of Conferences. 70: 02003. EDP Sciences. https://doi.org/10.1051/bioconf/20237002003

Earl, A.M., R. Losick & R. Kolter. 2008. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16 (6): 269-275. https://doi.org/10.1016/j.tim.2008.03.004

Elshaghabee, F.M.F., N. Rokana, R.D. Gulhane, C. Sharma & H. Panwar. 2017. Bacillus as potential probiotics status, concerns, and future perspectives. Front. Microbiol. 10 (8): 1490. https://doi.org/10.3389/fmicb.2017.01490

Faturrahman, F. 2013. Seleksi parsial probiotik untuk pertumbuhan abalon isolasi selektif, resistensi antibiotik dan patogensitas. Jurnal Ilmiah Pendidikan Biologi, Biologi Edukasi. 5 (1): 1-7.

Faturrahman, F., A. Meryandini, M.Z. Junior & I. Rusmana. 2015. The role of agarolytic bacteria in enhancing physiological function for digestive system of abalone (Haliotis asinina). Journal of Applied Environmental and Biological Sciences. 5 (5): 49-56.

Fu, X.T & S.M. Kim. 2010. Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs. 8 (1): 200-218. https://doi.org/10.3390/md8010200

Fu, X.T., H. Lin & S.M. Kim. 2008. Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Applied Microbiology and Biotechnology. 78: 265-273. https://doi.org/10.1007/s00253-007-1303-3

Grandiosa, R. 2020. Increasing awareness of abalone culture to support sus-tainable aquaculture in Indonesia. GSJ. 8 (6). 315-321. https://www.globalscientificjournal.com/journal_volume8_issue6_June_2020_edition.html

Han, W., J. Gu, Q. Yan, J. Li, Z. Wu, Q. Gu & Y. Li. 2012. A polysaccharide-degrading marine bacterium Flammeovirga sp. MY04 and its extracellular agarase system. J Ocean Univ China. 11 (3): 375-382. https://doi.org/10.1007/s11802-012-1929-3

Hernández-Casas, S., J.C. Seijo, L.F. Beltrán-Morales, A. Hernández-Flores, F. Arreguín-Sánchez & G. Ponce-Díaz. 2023. Analysis of supply and demand in the international market of major abalone fisheries and aquaculture production. Marine Policy. 148: 105405. https://doi.org/10.1016/j.marpol.2022.105405

Istiqomah, I., A. Isnansetyo, I.N. Atitus & A.F. Rohman. 2019. Isolasi bakteri selulolitik Staphylococcus sp. JC20 dari saluran pencernaan gurita (Octopus sp.) untuk kandidat probiotik ikan. Jurnal Perikanan Universitas Gadjah Mada. 21 (2): 93-98. https://doi.org/10.22146/jfs.39525

Kandasamy, K.P., R.K. Subramanian, R. Srinivasan, S. Ragunath, G. Balaji, M. Gracy & K. Latha. 2020. Shewanella algae and Microbulbifer elongatus from marine macro-algae isolation and characterization of agar-hydrolysing bacteria. Access Microbiology. 2 (11): 1-6. https://doi.org/10.1099/acmi.0.000170

Kang, J. Y., H-Y. Song & J-M. Kim. 2023. Agarolytic pathway in the newly isolated Aquimarina sp. bacterial strain ERC-38 and characterization of a putative β-agarase. Marine Biotechnology. 25 (2): 314-327. https://doi.org/10.1007/s10126-023-10206-7

Kawaroe, M., I. Pratiwi & A. Sunudin. 2017. Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production. IOP Conf. Series Earth and Environmental Science. 65 (1): 012025. https://doi.org/10.1088/1755-1315/65/1/012025

Kim, D-K., Y-R. Jang, K-H. Kim, M-N. Lee, A-R. Kim, E-J. Jo, T-H. Byun, E-T. Jeong, H-J. Kwon, B-W. Kim & E-W. Lee. 2011 Isolation and culture properties of a thermophilic agarase-producing strain, Microbulbifer sp. SD-1. Fisheries and Aquatic Sciences. 14 (3:) 186-191. https://doi.org/10.5657/FAS.2011.0186

KKP. 2018. Kelautan dan Perikanan Dalam Angka Tahun 2018 Pusat Data Statistik dan Informasi Kementerian Kelautan dan Perikanan Indonesia.

Latorre, J.D., X. Hernandez-Velasco, R.E. Wolfenden, J.L. Vicente, A.D. Woldfenden, A. Menconi, L.R. Bielke, B.M. Hargis & G. Tellez. 2016. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct fed microbial candidates for poultry. Front. Vet. Sci. 3: 395. https://doi.org/10.3389/fvets.2016.00095

Liu, Y., X. Jin, C. Wu, X. Zhu, M. Liu, D.R. Call & Z. Zhao. 2020. Genome-wide identification and functional characterization of β-Agarases in Vibrio astriarenae strain HN897. Frontiers in Microbiology. 11. https://doi.org/10.3389/fmicb.2020.01404

Logan, N.A & P.D. Vos. 2015. Bacillus. Bergey’s Manual of Systematics of Archaea and Bacteria. https://doi.org/10.1002/9781118960608.gbm00530

Long, M., Z. Yu & X. Xu. 2009. A novel β-Agarase with high pH stability from marine Agarivorans sp. LQ48. Marine Biotechnology. 12: 62-69. https://doi.org/10.1007/s10126-009-9200-7

Masoomi-Dezfooli, S., N. Gutierrez-Maddox, A.C. Alfaro & A. Seyfoddin. 2021. Development of a microencapsulated probiotic delivery system for New Zealand black-footed abalone (Haliotis iris). Pharmaceutical Development and Technology. 26 (4): 390-402. https://doi.org/10.1080/10837450.2021.1876090

Maulidya, K.D., P.A. Wiradana, T. Putranto & A. Soegianto. 2021. Abalone (Haliotis squamata) enlargement technique using a floating net cage method as a preliminary study of mariculture. Ecology Environment and Conservation. 27 (2): 685-689. https://scholar.unair.ac.id/en/publications/abalone-haliotis-squamata-enlargement-technique-using-a-floating-

Meinita, M.D.N., H-Q. Luyen, S-Y. Hwang, J-Y. Kang, D-K. Jin & Y-K. Hong. 2008. Isolation of the agarolytic bacterium Vibrio cyclotrophicus DAG-130 from abalone gut. Fisheries and Aquatic Sciences. 11 (2): 76-81. https://doi.org/10.5657/fas.2008.11.2.076

Moonsamy, G., N.N. Zulu, R. Lalloo, S. Ramchuran & S. Singh. 2020. Large-scale production of an abalone probiotic, Vibrio midae, isolated from a South African abalone, Halitotis midae for use in aquaculture. Biocatalysis and Agricultural Biotechnology. 29: 101794. https://doi.org/10.1016/j.bcab.2020.101794

Nayak, S.K. 2020. Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Reviews in Aquaculture. 13 (2): 862-906. https://doi.org/10.1111/raq.12503

Nurfajrie, N., S. Suminto & R. Rejeki. 2014. Pemanfaatan berbagai jenis makroalga untuk pertumbuhan abalon (Haliotis Squamata) dalam budidaya pembesaran Journal of Aquaculture Management and Technology. 3 (4): 142-150. https://ejournal3.undip.ac.id/index.php/jamt/article/view/6651

Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito & K. Horikoshi. 2005. Purification and characterization of a novel a-agarase from a Thalassomonas sp. Current Microbiology. 50: 212-216. https://doi.org/10.1007/s00284-004-4435-z

Ohta, Y., Y. Hatada, Y. Nogi, M. Miyazaki, Z. Li, M. Akita, Y. Hidaka, S. Goda, S. Ito & K. Horikoshi. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64 (4): 505-514. https://doi.org/10.1007/s00253-004-1573-y

Parashar, S & N. Kumar. 2018. Studies on agarolytic bacterial isolates from agricultural and industrial soil. Iranian Journal of Microbiology. 10 (5): 324-333. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc6339996/

Reimschuessel, R., R.A. Miller & C.M. Gieseker. 2013. Antimicrobial drug use in aquaculture. Antimicrobial Therapy in Veterinary Medicine, Fifth Edition. John Wiley and Sons. 39. https://doi.org/10.1002/9781118675014.ch39

Rosenberg, G., N. Steinberg, Y. Oppenheimer-Shaanan, T. Olender, S. Doron, J. Ben-Ari, A. Sirota-Madi, Z. Bloom-Ackermann & I. Kolodkin-Gal. 2016. Not so simple, not so subtle the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms. Biofilms and Microbiomes. 2: 15027. https://doi.org/10.1038/npjbiofilms.2015.27

Saraswathi, S., V. Vasanthabharathi, V. Kalaiselvi & S. Jayalakshmi. 2011. Characterization and optimization of agarase from an estuarine Bacillus subtilis. African Journal of Microbiology Research. 5 (19): 2960-2968. https://doi.org/10.5897/AJMR11.480

Suzuki, H., Y. Sawai, T. Suzuki & K. Kawai. 2003. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J. Biosci. Bioeng. 93 (4): 456-463. https://doi.org/10.1016/S1389-1723(03)80063-4

Temuujin, U., W-J. Chi, S-Y. Lee, Y-K. Chang & S-K. Hong. 2011. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2) an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol. 92 (4): 749-759. https://doi.org/10.1007/s00253-011-3347-7

Vera, J., R. Alvarez, E. Murano, J.C. Slebe & O. Leon. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of Its extracellular agarase Applied and Environmental Biology. 64 (11): 4378-4383. https://doi.org/10.1128/AEM.64.11.4378-4383.1998

Wuertz, S., A. Schroeder & K.M. Wanka. 2021. Probiotics in Fish Nutrition - Long-standing household remedy or native nutraceuticals?. Water. 13 (10) :1-19. https://doi.org/10.3390/w13101348

Yang, J-I., L-C. Chen, Y-Y. Shih, C. Hsieh, C-Y. Chen, W-M. Chen & C-C. Chen. 2011. Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT. Journal of Bioscience and Bioengineering. 112 (3): 225-232. https://doi.org/10.1016/j.jbiosc.2011.05.016

Yasa, N.S., M. Murwantoko, N.S.N. Handayani, G. Triastutik & L. Anshory. 2020. Physiological, biochemical and HSP70 and HSP90 gene expression profiles of tropical abalone Haliotis squamata in response to Vibrio alginolyticus infection. Indonesian Journal of Biotechnology. 25 (1): 12-20. https://doi.org/10.22146/ijbiotech.51322

Yusup, D.S., I.G. Mahardika, I.W. Suarna & I.N.A. Giri. 202). Feeding preference and growth response of early adults abalone, Haliotis squamata on some macroalgae. Biodiversitas Journal of Biological Diversity. 21 (9). 4369-4375. https://doi.org/10.13057/biodiv/d210956

Zhang, W-W & L. Sun. 2007. Cloning, characterization, and molecular application of a beta agarase gene from Vibrio sp. V134. Appl. Environ. Microbiol. 73: 2825-2831. https://doi.org/10.1128/AEM.02872-06

Zhao, J., B. Lu, C. Ke, M. Yang & K. Kang. 2009 Isolation and identification of a bacterium MA-B22 producing agarase and the optimal cultivation of enzyme production. Journal of Fisheries of China. 33 (6): 1037-1043.

Zilda, D.W., G. Patantis G, M.T. Sibero & Y.N. Fawzya. 2021. Penapisan dan identifikasi bakteri penghasil agarase dari sampel sedimen Laut Bara Caddi, Sulawesi Selatan, South Sulawesi. JPB Kelautan dan Perikanan. 16 (1): 11-21. http://dx.doi.org/10.15578/jpbkp.v16i1.699



DOI: https://doi.org/10.22146/jfs.93662

Article Metrics

Abstract views : 143

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Jurnal Perikanan Universitas Gadjah Mada

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perikanan Universitas Gadjah Mada (print ISSN 0853-6384; online ISSN 2502-5066) is published by Department of Fisheries, Universitas Gadjah Mada in collaboration with Semnaskan UGM (Seminar Nasional Tahunan Hasil Perikanan dan Kelautan) and ISMFR (International Symposium on Marine and Fisheries Research).

 

View My Stats