Analisis Efektivitas Apron 0.35 mmPb dalam Melindungi Pekerja Radiasi pada Pemeriksaan Radiografi

https://doi.org/10.22146/jkesvo.80499

Muhammad Irsal(1*), Shinta Gunawati Sutoro(2), Mahfud Edy Widiatmoko(3), Asumsie Tarigan(4), Guntur Winarno(5), Legia Prananto(6)

(1) Politeknik Kesehatan, Kemenkes Jakarta II & PUI-P2KAL Politeknik Kesehatan, Kemenkes Jakarta II
(2) Politeknik Kesehatan, Kemenkes Jakarta II
(3) Politeknik Kesehatan, Kemenkes Jakarta II
(4) Politeknik Kesehatan, Kemenkes Jakarta II
(5) Politeknik Kesehatan, Kemenkes Jakarta II
(6) Politeknik Kesehatan, Kemenkes Jakarta II
(*) Corresponding Author

Abstract


Latar Belakang: Quality Control (QC) pada apron wajib dilakukan satu tahun sekali. Hal ini bertujuan untuk memastikan keamanan pada pekerja radiasi sebelum melakukan prosedur pemeriksaan radiologi sehingga penerimaan dosis radiasi tidak melebihi 20 mSv/ tahun.

Tujuan: Menganalisis efektivitas penggunaan apron 0.35 mmPb untuk melindungi pekerja radiasi pada pemeriksaan radiografi.

Metode: Penelitian ini dilakukan di laboratorium Jurusan Teknik Radiodiagnostik dan Radioterapi, Poltekkes Kemenkes Jakarta II. Prosedur yang dilakukan pada penelitian adalah dengan simulasi apabila pekerja menerima paparan radiasi primer dan sekunder pada jarak 100 cm dengan rentang faktor eksposi 45-100kVp. Apron yang digunakan berbahan timbal (Pb) dengan ketebalan 0.35 mmPb dan, untuk pekerja radiasi, diganti dengan menggunakan pantom anthorophomorpic. Penggunaan luas lapangan sesuai kondisi klinis yaitu 18 cm x 24 cm, 43 cm x 35 cm, dan kemudian dilakukan analisis efektivitas apron Pb terhadap perubahan faktor eksposi.

Hasil: Hasil penelitian menunjukkan bahwa efektivitas penggunaan apron 0.35 mmPb pada rentang tegangan tabung 45-100kVp untuk kedua penggunaan luas lapangan memiliki nilai persentasi yang sama 99.9-93%.

Kesimpulan: Peningkatan tegangan tabung menyebabkan terjadinya penurunan atenuasi apron Pb.


Keywords


Apron 0.35 mmPb; Proteksi Radiasi; Pemeriksaan Radiografi; Paparan Primer; Paparan Sekunder

Full Text:

PDF


References

AbuAlRoos, N.J., Baharul Amin, N.A., Zainon, R. (2019) ‘Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review.’, Radiation Physics and Chemistry [Preprint].

Aghamiri, M.R., Mortazavi, S.M.J., Tayebi, M., Mosleh-Shirazi, M.A., Baharvand, H., Tavakkoli-Golpayegani, A., Zeinali-Rafsanjani, B. (2011) ‘A Novel Design for Production of Efficient Flexible Lead-Free Shields against X-ray Photons in Diagnostic Energy Range.’, J Biomed Phys Eng 1. [Preprint].

Aghaz, A., Faghihi, R., Mortazavi, S.M.J., Haghparast, A., Mehdizadeh, S., Sina, S. (2016) ‘Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range.’, International Journal of Radiation Research, 14, pp. 127–131.

Alhassan, M., Khan, B., Baraya, J.T. (2020) ‘Evaluation of 1.5mm Lead Shield for Radiological Protection and Comparison of Calculated and Measured Results of Equivalent Dose.’, Journal of Applied Sciences and Environmental Management. [Preprint].

Alqahtani, A.M., Alqahtani, M.S., Hussein, K.I., Alkulib, A.J., Alqahtani, F.F., Yousef, E. (2021) ‘Radiation protection assessment of gamma photons in 64TeO 2-10WO 3-10Nb 2 O 5-15KF-1La 2 O 3 glasses doped with Tm 2 O 3 using photon-shielding and dosimetry software.’, Chalcogenide Letters, 18(513–523).

Behr-Meenen, C., von Boetticher, H., Kersten, J.F., Nienhaus, A. (2021) ‘Radiation Protection in Interventional Radiology/Cardiology-Is State-of-the-Art Equipment Used?’, Int J Environ Res Public Health, 18.

Bjørkås, L.W., Blø, S., Rekdal, M.K., Rusandu, A. (2020) ‘Quality of radiation protection aprons and quality control routines at different diagnostic imaging modalities’, Radiography Open, 6, pp. 64–74.

Çetin, H., Yurt, A., Yüksel, S.H. (2017) ‘The Absorption Properties of Lead-Free Garments for Use In Radiation Protection’, Radiat Prot Dosimetry, 173, pp. 345–350.

Dalah, E.Z., Mahdi, O., Elshami, W., Abuzaid, M.M., David, L.R., Mira, O.A., Obaideen, A., Elmahdi, H.M., Bradley, D.A. (2018) ‘Occupational doses to cardiologists performing fluoroscopically-guided procedures.’, Radiation Physics and Chemistry, 153, pp. 21–26.

Elshami, W., Abuzaid, M.M., Tekin, H.O. (2020) ‘Effectiveness of breast and eye shielding during cervical spine radiography: An experimental study.’, Risk Manag Healthc Policy. [Preprint].

Endo, M., Haga, Y., Sota, M., Tanaka, A., Otomo, K., Murabayashi, Y., Abe, M., Kaga, Y., Inaba, Y., Suzuki, M., Meguro, T., Chida, K. (2021) ‘Evaluation of novel X-ray protective eyewear in reducing the eye dose to interventional radiology physicians.’, J Radiat Res, 62, pp. 414–419.

Haga, Y., Chida, K., Kaga, Y., Sota, M., Meguro, T., Zuguchi, M. (2017) ‘Occupational eye dose in interventional cardiology procedures’, Scientific Reports, pp. 1–7.

Hayre, C.M., Bungay, H., Jeffery, C. (2020) ‘How effective are lead-rubber aprons in protecting radiosensitive organs from secondary ionizing radiation?’, Radiography [Preprint].

Johansen, S., Hauge, I.H.R., Hogg, P., England, A., Lança, L., Gunn, C., Sanderud, A. (2018) ‘Are Antimony-Bismuth Aprons as Efficient as Lead Rubber Aprons in Providing Shielding against Scattered Radiation?’, J Med Imaging Radiat Sci [Preprint].

Kato, M., Chida, K., Munehisa, M., Sato, T., Inaba, Y., Suzuki, M., Zuguchi, M. (2021) ‘Non-Lead Protective Aprons for the Protection of Interventional Radiology Physicians from Radiation Exposure in Clinical Settings: An Initial Study’, Diagnostics (Basel), 11.

Kim, S.C. (2021) ‘Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials.’, Applied Sciences, 11, p. 1705.

Kowatari, M., Nagamoto, K., Nakagami, K., Tanimura, Y., Moritake, T., Kunugita, N. (2022) ‘Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff’, Journal of Radiation Protection and Research, 47, pp. 39–49.

Lança, L., Silva, A. (2013) Digital imaging systems for plain radiography.

Li, Z., Zhou, W., Zhang, X., Gao, Y., Guo, S. (2021) ‘High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism’, Sci Rep, 11.

Lichliter, A., Weir, V., Heithaus, R.E., Gipson, S., Syed, A., West, J., Rees, C. (2017) ‘Clinical Evaluation of Protective Garments with Respect to Garment Characteristics and Manufacturer Label Information.’, J Vasc Interv Radiol, 28, pp. 148–155.

Lin, P.J.P., Aljabal, A.F., Wargo, R.R. (2020) ‘Characterization and verification of lead thickness of commercially available lead foil tape for the measurements of lead equivalency of radio-protective shields’, J Appl Clin Med Phys, 21, pp. 216–220.

Livingstone, R.S., Varghese, A. (2018) ‘A simple quality control tool for assessing integrity of lead equivalent aprons’, Indian J Radiol Imaging, 28, pp. 258–262.

López, P.O., Dauer, L.T., Loose, R., Martin, C.J., Miller, D.L., Vañó, E., Doruff, M., Padovani, R., Massera, G., Yoder, C. (2018) ‘Occupational Radiological Protection in Interventional Procedures’, ICRP Publication, 139, pp. 1–118.

Maeda, T., Hayashi, H., Lee, C., Ando, M., Takegami, K., Kimoto, N., Konishi, T., Murakami, S., Maki, M., Yamashita, K., Higashino, K. (2022) ‘Experimental study of X-ray dose reduction factor when using various size bismuth and lead particles’, Radiation Physics and Chemistry, 195, p. 110049.

Mehnati, P., Malekzadeh, R., Sooteh, M.Y. (2020) ‘Application of personal non-lead nano-composite shields for radiation protection in diagnostic radiology: a systematic review and meta-analysis’, Nanomed J, 7, pp. 170–182.

Mori, H., Koshida, K., Ishigamori, O., Matsubara, K. (2014) ‘Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields’, Radiol Phys Technol, 7, pp. 158–166.

Mortazavi, S.M.J., Omidifar, N., Faghihi, R., Mehdizadeh, S., Masoumi, S., Hashemi, S.M., Haghani, M., Nowrouz-Alizadeh, F., Movahhedi, M.M. (2012) ‘Are Radiation Exposure Levels Used in Cardiology Dangerous?’, J Biomed Phys Eng, 2.

Oyar, O., Kişlalioǧlu, A. (2012) ‘How protective are the lead aprons we use against ionizing radiation?’, Diagn Interv Radiol, 18, pp. 147–152.

Pan, L.F. a., Kittipayak, S., Yen, S.L. in, Pan, L.K. wang, Lin, C.H. sun (2016) ‘Evaluation of the occupational X-rays dose of the medical staff in a cardiac catheterization laboratory using an acrylic phantom and semiconductor dosimeter’, Hell J Nucl Med, 19, pp. 140–146.

Park, P.E., Park, J.M., Kang, J.E., Cho, J.H., Cho, S.J., Kim, J.H., Sim, W.S., Kim, Y.C. (2012) ‘Radiation safety and education in the applicants of the final test for the expert of pain medicine’, Korean J Pain, 25, pp. 16–21.

Poulopoulos, P., Brezesinski, T., Kim, S.-C. (2022) ‘Preparation and Performance Evaluation of X-ray-Shielding Barium Sulfate Film for Medical Diagnosis Using PET Recycling and Multi-Carrier Principles’, Coatings, 12, p. 973.

Ramanathan, V., Almeida, S., Fernando, K. (2021) ‘Occupational dose measurement for radiographers during cardiac catheterization procedures’, International Journal of Scientific and Research Publications (IJSRP), 11, pp. 476–481.

Wargo, R.R., Aljabal, A.F., Lin, P.J.P. (2020) ‘Evaluation and verification of a simplified lead equivalency measurement method’, J Appl Clin Med Phys, 21, pp. 152–156.



DOI: https://doi.org/10.22146/jkesvo.80499

Article Metrics

Abstract views : 528 | views : 856

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jurnal Kesehatan Vokasional

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

Jurnal Kesehatan Vokasional with registered number ISSN 2541-0644 (print), ISSN 2599-3275 (online) published by the Departement of Health Information Management and Services, Vocational College, Universitas Gadjah Mada

site
stats View My Stats