Desain dan Implementasi Sistem Navigasi pada Automated Guided Vehicle (AGV)
Fakih Irsyadi(1*), Dinar Nugroho Pratomo(2), Sugeng Julianto(3), Muhammad Shofuwan Anwar(4), Alfonzo Aruga Paripurna Barus(5)
(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(4) Universitas Gadjah Mada
(5) Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Abstract – Automated Guided Vehicle (AGV) is an autonomous robot which is widely used in modern industry. AGV is commonly used as a transporter robot. It can be used to transport things from one place to another place. There are several reasons that make AGV is popularly used in modern industry, such as, high precision, secure, low operation cost and low maintenance cost. This research aims to build mechanical and navigation system for AGV. The navigation system consists of line sensor, RFID reader and rotary encoder. The testing result show that mechanical and electrical system of AGV robot was successfully finished. Each part of navigation system works well according to the design. Line sensor can be used for path detection with a given threshold values. Rotary encoder can be used to measure the speed of AGV with maximum of error is less than 2,5%. This result shows that every part of AGV is ready to run localization and navigation algorithm, even though, it needs to do some improvement on driving parts and RFID reading mechanism.
Keywords : automated guided vehicle, industrial robot, autonomous robot, navigation system
Intisari – Automated Guided Vehicle (AGV) merupakan sebuah robot otonom yang secara luas digunakan di industri moderen. AGV seringkali digunakan sebagai robot pemindah barang menggantikan forklift. Tingkat akurasi dan keamanan yang tinggi serta biaya operasional dan perawatan yang rendah merupakan beberapa alasan penggunaan robot AGV di Industri. Penelitian ini bertujuan untuk membangun sistem mekanik dan merancang sistem navigasi pada AGV. Sistem navigasi terdiri dari sensor garis, perangkat pembaca RFID dan rotary encoder. Proses pengujian sistem dilakukan dengan menguji fungsionalitas dari setiap komponen penyusun AGV secara terpisah. Hasil pengujian menunjukkan bahwa sistem mekanik dan elektronik AGV berhasil dibangun. Setiap perangkat pada sistem navigasi bekerja sesuai dengan rancangan. Sensor garis dapat mendeteksi garis lintasan dengan nilai treshhold yang diberikan. RFID reader dapat mendeteksi kartu RFID yang dipasang pada jalur lintasan. Rotary encoder dapat digunakan untuk menghitung kecepatan roda AGV dengan tingkat kesalahan kurang dari sebesar 2,5%. Hasil ini menujukkan bahwa seluruh komponen penyusun AGV siap digunakan dan diintegrasikan untuk menjalankan algoritma lokalisasi dan navigasi meskipun perlu dilakukan perbaikan pada mekanik penggerak maupun mekanisme pembacaan RFID.
Kata kunci : automated guided vehicle, robot industri, robot otonom, sistem navigasi
Full Text:
PDFReferences
[1] Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0 - A Glimpse. Procedia Manufacturing, 20, 233–238. https://doi.org/10.1016/j.promfg.2018.02.034
[2] Wicaksono H, and Nilkhamhang I. (2017). Glocal Controller-based Formation Control Strategy for Flexible Material Handling., IEEE International Conference of the Society of Instrument and Control Engineers (SICE): 787-792.
[3] Draganjac I., et al. (2016). Decentralized Control of Multi-AGV Systems in Autonomous Warehousing Applications., IEEE Transactions on Automotion Science and Engineering. 13(4): 1433 – 1447.
[4] P. K. Mohanty, A. K. Sah, V. Kumar and S. Kundu, "Application of Deep Q-Learning for Wheel Mobile Robot Navigation," 2017 3rd International Conference on Computational Intelligence and Networks (CINE), Odisha, India, 2017, pp. 88-93, doi: 10.1109/CINE.2017.11.
[5] Da Mota, F. A. X., Rocha, M. X., Rodrigues, J. J. P. C., De Albuquerque, V. H. C., & De Alexandria, A. R. (2018). Localization and navigation for autonomous mobile robots using petri nets in indoor environments. IEEE Access, 6, 31665–31676. https://doi.org/10.1109/ACCESS.2018.2846554
[6] Joni, K., Ulum, M., & Abidin, Z. (2016). Robot Line Follower Berbasis Kendali Proportional-Integral-Derivative (PID) Untuk Lintasan Dengan Sudut Ekstrim. Jurnal Infotel, 8(2), 138–142. https://doi.org/10.20895/infotel.v8i2.129
[7] Hakan Temeltas. (2018). a Real-Time Localization Method for Agvs in Smart Factories. 50(2), 45–50.
[8] T. Bräunl, “Driving Robots,” in Driving Robots. In: Embedded Robotics, 3rd ed., Springer, Berlin, Heidelberg, 2008, pp. 131–135.
[9] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, 2nd ed. New York: Cambridge University Press, 2010.
[10] Susilo, D. B., Wibawanto, H., & Mulwinda, A. (2018). Prototype Mesin Pengantar Barang Otomatis Menggunakan Load Cell Berbasis Robot Line Follower. Jurnal Teknik Elektro, 10(1), 23–29. https://doi.org/10.15294/jte.v10i1.12277
[11] Rotzbua, Arduino library for MFRC522 and other RFID RC522 based modules. (2020). Retrieved from https://github.com/miguelbalboa/rfid
DOI: https://doi.org/10.22146/juliet.v2i1.64830
Article Metrics
Abstract views : 3319 | views : 5966Refbacks
- There are currently no refbacks.
SINTA 4 accredited based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol. 2 No. 1 (2020) - Vol. 6 No. 1 (2025)
e-ISSN: 2746-2536