Design of Water Quality Monitoring System for Koi Fish Farming Using NodeMCU ESP32 and Blynk Application Based on Internet of Things

https://doi.org/10.22146/juliet.v4i1.83131

Dendi Rosandi(1*), Junaidi Junaidi(2), Donni Kis Apriyanto(3), Arif Surtono(4)

(1) Department of Physics, Faculty of Mathematics and Natural Science, University of Lampung
(2) Department of Physics, Faculty of Mathematics and Natural Science, University of Lampung
(3) Department of Physics, Faculty of Mathematics and Natural Science, University of Lampung
(4) Department of Physics, Faculty of Mathematics and Natural Science, University of Lampung
(*) Corresponding Author

Abstract


Intisari – Penelitian tentang rancang bangun sistem pemantauan kualitas air budidaya ikan koi telah dilakukan menggunakan NodeMCU ESP32 berbasis Internet of Things (IoT) yang terhubung dengan perangkat Android melalui aplikasi Blynk. Sistem ini terdiri dari empat sensor kualitas air, yaitu jumlah padatan terlarut, tingkat keasaman, tingkat amonia, dan besar suhu. Sistem ini dibuat agar kualitas air ikan koi selalu terpantau secara langsung lewat Android. Keuntungan menggunakan perangkat Android sebagai penampil sistem pemantauan adalah memudahkan pengguna untuk memantau kondisi air di lokasi manapun. Hasil dari sistem ini ditampilkan dalam bentuk pemantauan pada aplikasi Blynk dan pada liquid crystal display (LCD) 20×4, dengan notifikasi tentang ambang batas kualitas air. Hasil penelitian menunjukkan bahwa sensor memiliki akurasi sebesar 94,92% untuk jumlah padatan terlarut, 98,88% untuk tingkat keasaman, 90,49% untuk tingkat amonia, dan 98,77% untuk suhu, dengan waktu tunggu selama 5 menit untuk tampilan hasil pemantauan. Tingkat akurasi yang tinggi menunjukan alat ini dapat digunakan untuk melakukan pemantauan kualitas air budidaya ikan koi.

Kata kunci: Blynk, ESP32, IoT, pemantauan, kualitas air

Abstract - A research study on the design and development of a water quality monitoring system for koi fish farming has been conducted using the Internet of Things (IoT) based NodeMCU ESP32, connected to an Android device through the Blynk application. This system consists of four water quality sensors, namely dissolved solids, acidity level, ammonia level, and temperature. The purpose of this system is to ensure direct monitoring of the koi fish water quality through an Android device. The advantage of using an Android device as the monitoring interface is that it allows users to monitor the water conditions from any location. The system's results are displayed through the Blynk application and a 20x4 liquid crystal display (LCD) screen, with notifications indicating the threshold limits of water quality. The research findings indicate that the sensors have an accuracy of 94.92% for dissolved solids, 98.88% for acidity level, 90.49% for ammonia level, and 98.77% for temperature, with a waiting time of 5 minutes for the monitoring results to be displayed. The high level of accuracy demonstrates that this device can be used effectively for monitoring the water quality in koi fish farming.

Keywords: Blynk, ESP32, IoT, monitoring, water quality

Full Text:

PDF


References

[1] E. E. Barus, R. K. Pingak, and A. C. Louk, “Otomatisasi Sistem Kontrol pH dan Informasi Suhu Pada Akuarium Menggunakan Arduino Uno dan Raspberry PI 3,” J. Fis. Fis. Sains dan Apl., vol. 3, no. 2, pp. 117–125, 2018, doi: 10.35508/fisa.v3i2.612.

[2] I. G. H. Putrawan, P. Rahardjo, and I. G. A. P. R. Agung, “Sistem Monitoring Tingkat Kekeruhan Air dan Pemberi Pakan Otomatis Pada Kolam Budidaya Ikan Koi Berbasis NodeMCU,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 1, p. 1, 2019, doi: 10.24843/mite.2020.v19i01.p01.

[3] H. Azmi, D. R. Indriyanti, and N. Kariada, “Identifikasi Ektoparasit pada Ikan Koi (Cyprinus carpio L) dI Pasar Ikan Hias Jurnatan Semarang,” Unnes J. Life Sci., vol. 2, no. 2, pp. 64–70, 2013, ISSN 2252-6277.

[4] B. Artono and R. G. Putra, “Penerapan Internet Of Things (IoT) Untuk Kontrol Lampu Menggunakan Arduino Berbasis Web,” J. Teknol. Inf. dan Terap., vol. 5, no. 1, pp. 9–16, 2019, doi: 10.25047/jtit.v5i1.73.

[5] A. Setiawan and A. I. Purnamasari, “Pengembangan Smarth Home Dengan Microcontrollers ESP23 Dan MC-38 Door Magnetic Switch Sensor Berbasis Internet of Things (IoT) Untuk Meningkatkan Deteksi Dini Keamanan Perumahan,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, p. Halaman 541-457, 2019, ISSN 2580-0760.

[6] Y. Irawan, A. Febriani, R. Wahyuni, and Y. Devis, “Water Quality Measurement and Filtering Tools using Arduino Uno, PH Sensor and TDS Meter Sensor,” J. Robot. Control, vol. 2, no. 5, pp. 357–362, 2021, doi: 10.18196/jrc.25107357.

[7] M. Martani, “Perancangan dan Pembuatan Sensor TDS pada Proses Pengendapan CaCO3 dalam Air dengan Metode Pelucutan Elektron dan Medan Magnet,” vol. 17, no. 3, 2014, ISSN : 1410-9662.

[8] R. Afrianita, T. Edwin, and A. Alawiyah, “Analisis Intrusi Air Laut dengan Pengukuran Total Dissolved Solids (TDS) Air Sumur Gali di Kecamatan Padang Utara,” J. Dampak, vol. 14, no. 1, p. 62, 2017, doi: 10.25077/dampak.14.1.62-72.2017.

[9] Suryono, Teknologi Sensor : Konsep Fisis dan Teknik Akuisisi Data Berbasis Mikrokontroler 32 Bit ATSAM3X8E (ARDUINO DUE), 1st ed. Semarang: Undip Press, 2018.

[10] N. Sitorus, “Pendetaksi pH Air Menggunakan Sensor pH Meter V1.1 Berbasis Arduino Nano,” Fisika, Universitas Sumatera Utara, Medan, 2017.

[11] A. A. Rosa, B. A. Simon, and K. S. Lieanto, “Sistem Pendeteksi Pencemar Udara Portabel Menggunakan Sensor MQ-7 dan MQ-135,” Ultim. Comput., vol. XII, no. 1, pp. 23–28, 2020, ISSN 2355-3286.

[12] A. T. Ajiboye, J. F. Opadiji, A. O. Yusuf, and J. O. Popoola, “Analytical determination of load resistance value for MQ-series gas sensors: MQ-6 as case study,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 2, pp. 575–582, 2021, doi: 10.12928/TELKOMNIKA.v19i2.17427.

[13] M. Yusro and A. Diamah, Sensor & Tranduser, Teori dan Aplikasi. Jakarta: Fakultas Teknit Universitas Negeri Jakarta, 2019.

[14] O. Bondarenko, S. Kininmonth, and M. Kingsford, “Under Water Sensor Network, Oceanography and Plankton Assemblages,” IEEE, vol. 3, no. 1, pp. 657–662, 2007, doi: 10.1109/ISSNIP.2007.4496921.

[15] S. Alam, A. Y, M. A. Kadir, and E. Elihami, “Sistem Otomatis Sirkulasi Udara pada Tambak Udang,” JUTKEL J. Telekomun. Kendali dan List., vol. 2, no. 1, pp. 1–10, 2020, ISSN 2721-9372.

[16] R. Pratiwi, “Penelitian Sumber Panas dengan Metode Tomografi Menggunakan Sensor Thermometer Digital DS18B20,” Fisika, Universitas Indonesia, Depok, 2009.

[17] L. D. Jones and A. F. Chin, Electronics Instruments and Measurements. Upper Saddle River: Prentice-Hall, 1991.

[18] E. Rohadi et al., “Sistem Monitoring Budidaya Ikan Lele Berbasis Internet Of Things Menggunakan Raspberry Pi,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, p. 745, 2018, doi: 10.25126/jtiik.2018561135.



DOI: https://doi.org/10.22146/juliet.v4i1.83131

Article Metrics

Abstract views : 2603 | views : 2843

Refbacks



SINTA 4 accredited based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol. 2 No. 1 (2020) - Vol. 6 No. 1 (2025)

e-ISSN: 2746-2536