Potensi Polimer Alam Dalam Sistem Penghantaran Obat Yang Tertarget
Reynelda Juliani Sagala(1*), Agustina DR Nurcahyanti(2)
(1) Program Studi Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Katolik Indonesia Atma Jaya Jalan Pluit Raya No.2, Jakarta Utara, Indonesia
(2) Program Studi Farmasi, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Katolik Indonesia Atma Jaya Jalan Pluit Raya No.2, Jakarta Utara, Indonesia
(*) Corresponding Author
Abstract
Polimer alami telah digunakan sebagai pembawa dalam sistem penghantaran obat dan molekul bioaktif lain. Penelitian terkait penggunaan polimer alami seperti polisakarida, protein dan DNA sebagai pembawa obat telah banyak dikembangkan karena berpotensi meningkatkan efek terapi dan mengurangi efek samping yang tidak diinginkan, contoh aplikasi pada rekayasa jaringan, teknologi pengobatan luka, dan terapi kanker. Perkembangan riset saat ini telah sampai pada modifikasi secara kimia dan fisika, yaitu contohnya dengan penambahan moites untuk meningkatkan efikasi karena penghantarannya yang tertarget. Oleh karena itu, formulasi baru seperti sistem polimer sebagai pembawa obat menjadi menarik karena dapat mencapai respon farmakologi yang lebih baik. Sistem ini merupakan media yang sesuai untuk distribusi dan penghantaran obat yang terkontrol. Mekanisme pelepasan obat yang terkontrol melibatkan polimer dengan sifat fisika kimia yang beragam. Jenis polimer yang potensial dalam penghantaran obat yang telah digunakan termasuk nanopartikel, mikropartikel, dendrimer, misel, dan bentuk sistem penghantaran yang lain. Penulis mengulas sumber polimer alam karena dibandingkan polimer sintetik, efek samping yang ditimbulkan pada sistem biologis rendah, tidak toksik, biodegradable, biokompatibel, dan tidak adanya residu kimia yang toksik dari penggunaan bahan pada proses persiapan, contohnya pada agen crosslinking. Pengembangan konjugasi antar polimer alam untuk meningkatkan efektifitas terapi menjadi menarik dan dapat diaplikasikan dalam sistem penghantaran obat.
Kata Kunci : Polimer alam, polisakarida, protein, DNA, penghantaran tertarget.
Keywords
Full Text:
PDFReferences
Misra A, Shahiwala A. Applications of Polymers in Drug Delivery Drug Delivery. 2014.
Mark Chasin, Langer R. Biodegradable Polymers As Drug Delivery Systems. New York: Marcel Dekker, Inc; 1990.
Alexander T Florence, David Attwood. Physicochemical Principles of Pharmacy. Pharmaceutical Press; 2006. 274 p.
Ko H, Sfeir C, Kumta PN. Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering Novel synthesis strategies for natural polymer. 2010;
Harsha K, Malhotra B, Janaswamy S. Natural Polymers for Drug Delivery. Oxfordshire, UK: Boston, MA: CABI; 2017. 2 p.
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. Adv Sci. 2018 Apr;5(4):1700513.
Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Vol. 107, Biomedicine and Pharmacotherapy. Elsevier Masson SAS; 2018. p. 96–108.
Fry SC. Cell Wall Polysaccharide Composition and Covalent Crosslinking. In: Annual Plant Reviews. Oxford, UK: Wiley-Blackwell; 2010. p. 1–42.
Diener M, Adamcik J, Sánchez-Ferrer A, Jaedig F, Schefer L, Mezzenga R. Primary, Secondary, Tertiary and Quaternary Structure Levels in Linear Polysaccharides: From Random Coil, to Single Helix to Supramolecular Assembly. Biomacromolecules. 2019 Apr;20(4):1731–9.
Posocco B, Dreussi E, De Santa J, Toffoli G, Abrami M, Musiani F, et al. Polysaccharides for the delivery of antitumor drugs. Vol. 8, Materials. MDPI AG; 2015. p. 2569–615.
Chakraborty I, Sen IK, Mondal S, Rout D, Bhanja SK, Maity GN, et al. Bioactive polysaccharides from natural sources: A review on the antitumor and immunomodulating activities. Vol. 22, Biocatalysis and Agricultural Biotechnology. Elsevier Ltd; 2019. p. 101425.
Ullah S, Khalil AA, Shaukat F, Song Y. Sources, extraction and biomedical properties of polysaccharides. Vol. 8, Foods. MDPI Multidisciplinary Digital Publishing Institute; 2019.
Mudgil D, Barak S, Khatkar BS. Guar gum: processing, properties and food applications—A Review. J Food Sci Technol. 2014;51(3):409.
NGN S, TS D, KLK P, Abbas Z. A review on derivatization of Guar and study of Pharmaceutical applications of Guar derivatives. Indian Drugs. 2014;51(05):5–17.
Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ. The structural characteristics of starches and their functional properties. CyTA - J Food. 2018 Jan;16(1):1003–17.
Martens BMJ, Gerrits WJJ, Bruininx EMAM, Schols HA. Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. J Anim Sci Biotechnol. 2018 Dec;9(1):91.
Sun B, Zhang M, Shen J, He Z, Fatehi P, Ni Y. Applications of Cellulose-based Materials in Sustained Drug Delivery Systems. Curr Med Chem. 2018 Oct;26(14):2485–501.
Sosnik A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN Pharm. 2014 Apr;2014:1–17.
Hariyadi DM, Islam N. Current status of alginate in drug delivery. Vol. 2020, Advances in Pharmacological and Pharmaceutical Sciences. Hindawi Limited; 2020.
Lopes PP, Tanabe EH, Bertuol DA. Chitosan as biomaterial in drug delivery and tissue engineering. In: Handbook of Chitin and Chitosan. Elsevier; 2020. p. 407–31.
Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Vol. 23, Journal of Food and Drug Analysis. Elsevier Taiwan LLC; 2015. p. 619–29.
Bayer IS. Hyaluronic Acid and Controlled Release: A Review. Vol. 25, Molecules (Basel, Switzerland). NLM (Medline); 2020.
How KN, Yap WH, Lim CLH, Goh BH, Lai ZW. Hyaluronic Acid-Mediated Drug Delivery System Targeting for Inflammatory Skin Diseases: A Mini Review. Front Pharmacol. 2020 Jul;11:1105.
Laza-Knoerr AL, Gref R, Couvreur P. Cyclodextrins for drug delivery. Vol. 18, Journal of Drug Targeting. J Drug Target; 2010. p. 645–56.
Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Vol. 2, Expert Opinion on Drug Delivery. Expert Opin Drug Deliv; 2005. p. 335–51.
Haimhoffer Á, Rusznyák Á, Réti-Nagy K, Vasvári G, Váradi J, Vecsernyés M, et al. Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Sci Pharm. 2019 Nov;87(4):33.
Huang S, Huang G. Preparation and drug delivery of dextran-drug complex. Vol. 26, Drug Delivery. Taylor and Francis Ltd; 2019. p. 252–61.
Nácher-Vázquez M, Ballesteros N, Canales Á, Rodríguez Saint-Jean S, Pérez-Prieto SI, Prieto A, et al. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydr Polym. 2015;124:292–301.
Awadhiya A, Tyeb S, Rathore K, Verma V. Agarose bioplastic-based drug delivery system for surgical and wound dressings. Eng Life Sci. 2017 Feb;17(2):204–14.
Marras-Marquez T, Peña J, Veiga-Ochoa MD. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture. Carbohydr Polym. 2014 Mar;103(1):359–68.
Liu LS, Fishman ML, Hicks KB. Pectin in controlled drug delivery - A review. Vol. 14, Cellulose. Springer; 2007. p. 15–24.
Sriamornsak P. Application of pectin in oral drug delivery. Vol. 8, Expert Opinion on Drug Delivery. Taylor & Francis; 2011. p. 1009–23.
Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Vol. 13, Marine Drugs. MDPI AG; 2015. p. 3340–59.
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Vol. 18, Marine drugs. NLM (Medline); 2020.
Reddy OS, Subha M, Jithendra T, Madhavi C, Rao KC. Fabrication and characterization of smart karaya gum/sodium alginate semi-IPN microbeads for controlled release of D-penicillamine drug. Polym Polym Compos. 2021 Mar;29(3):163–75.
Sethi S, Kaith BS, Kaur M, Sharma N, Khullar S. Study of a cross-linked hydrogel of Karaya gum and Starch as a controlled drug delivery system. J Biomater Sci Polym Ed. 2019 Dec;30(18):1687–708.
Khizer Z, Nirwan JS, Conway BR, Ghori MU. Okra (Hibiscus esculentus) gum based hydrophilic matrices for controlled drug delivery applications: Estimation of percolation threshold. Int J Biol Macromol. 2020 Jul;155:835–45.
Nayak AK, Ara TJ, Saquib Hasnain M, Hoda N. Okra gum-alginate composites for controlled releasing drug delivery. In: Applications of Nanocomposite Materials in Drug Delivery. Elsevier; 2018. p. 761–85.
Verma A, Tiwari A, Panda PK, Saraf S, Jain A, Jain SK. Locust bean gum in drug delivery application. In: Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier; 2019. p. 203–22.
Nayak AK, Hasnain MS. Locust bean gum based multiple units for oral drug delivery. In: SpringerBriefs in Applied Sciences and Technology. Springer Verlag; 2019. p. 61–6.
Kaialy W, Emami P, Asare-Addo K, Shojaee S, Nokhodchi A. Psyllium: A promising polymer for sustained release formulations in combination with HPMC polymers. Pharm Dev Technol. 2014;19(3):269–77.
Chavanpatil M, Jain P, Chaudhari S, Shear R, Vavia P. Development of sustained release gastroretentive drug delivery system for ofloxacin: In vitro and in vivo evaluation. Int J Pharm. 2005 Nov;304(1–2):178–84.
Newton AMJ, Indana VL, Kumar J. Chronotherapeutic drug delivery of Tamarind gum, Chitosan and Okra gum controlled release colon targeted directly compressed Propranolol HCl matrix tablets and in-vitro evaluation. Int J Biol Macromol. 2015 Aug;79:290–9.
Nayak AK, Pal D. Functionalization of Tamarind Gum for Drug Delivery. In 2018. p. 25–56.
Patel V, Sabale V, Paranjape A. Comparative evaluation of tara gum as mucoadhesive and controlled release agent in buccal tablets. In: The IIER International Conference. 2015. p. 20–3.
Javaid MU, Qurat-ul-Ain, Tahir U, Shahid S. A summarized review about natural polymers role in floating drug delivery system and in-vivo evaluation studies. Int Curr Pharm J. 2017;6(4):23–6.
De Cicco F, Russo P, Reverchon E, García-González CA, Aquino RP, Del Gaudio P. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr Polym. 2016 Aug;147:482–9.
Miao T, Rao KS, Spees JL, Oldinski RA. Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J Control Release. 2014 Oct;192:57–66.
Greenwood-Goodwin M, Teasley ES, Heilshorn SC. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater Sci. 2014 Nov;2(11):1627–39.
Li W, Guan T, Zhang X, Wang Z, Wang M, Zhong W, et al. The effect of layer-by-layer assembly coating on the proliferation and differentiation of neural stem cells. ACS Appl Mater Interfaces. 2015 Feb;7(5):3018–29.
Mohandas A, Anisha BS, Chennazhi KP, Jayakumar R. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids Surfaces B Biointerfaces. 2015 Mar;127:105–13.
Choi GH, Lee HJ, Lee SC. Titanium-adhesive polymer nanoparticles as a surface-releasing system of dual osteogenic growth factors. Macromol Biosci. 2014;14(4):496–507.
Chen FM, Ma ZW, Dong GY, Wu ZF. Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery. Acta Pharmacol Sin. 2009 Apr;30(4):485–93.
Suarez S, Grover GN, Braden RL, Christman KL, Almutairi A. Tunable protein release from acetalated dextran microparticles: A platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules. 2013 Nov;14(11):3927–35.
Xie J, Wang H, Wang Y, Ren F, Yi W, Zhao K, et al. Induction of Angiogenesis by Controlled Delivery of Vascular Endothelial Growth Factor Using Nanoparticles. Cardiovasc Ther. 2013 Jun;31(3).
Zhao L, Zhang K, Bu W, Xu X, Jin H, Chang B, et al. Effective delivery of bone morphogenetic protein 2 gene using chitosan-polyethylenimine nanoparticle to promote bone formation. RSC Adv. 2016 Apr;6(41):34081–9.
Cun M, Remun C, Alonso J. Formation of New Glucomannan - Chitosan Nanoparticles and Study of Their Ability To Associate and Deliver Proteins. 2006;4152–8.
Du J, Sun R, Zhang S, Govender T, Zhang L, Xiong C, et al. Novel Polyelectrolyte Carboxymethyl Konjac Glucomannan – Chitosan Nanoparticles for Drug Delivery. 2004;954–8.
Zhang L, Xiong C, Peng Y. Carboxymethyl Konjac Nanoparticles for Drug Delivery . I . Physicochemical Characterization of the Carboxymethyl Konjac Glucomannan – Chitosan. 2004;
Nadirah A, Romainor B, Chin SF, Pang SC, Bilung LM. Preparation and Characterization of Chitosan Nanoparticles-Doped Cellulose Films with Antimicrobial Property. 2014;2014.
Giri TK. 20 - Alginate Containing Nanoarchitectonics for Improved Cancer Therapy [Internet]. Nanoarchitectonics for Smart Delivery and Drug Targeting. Elsevier Inc.; 2016. 3-31 p. Available from: http://dx.doi.org/10.1016/B978-0-323-47347-7/00020-3
Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate / Chitosan Nanoparticles are Effective for Oral Insulin Delivery. 2007;24(12):2198–206.
Thach LT, Tran MT, Can M Van, Tran LD, Bach GL, Sathish CI. Characterization of chitosan / alginate / lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. 2020;1–15.
Katuwavila NP, Perera ADLC, Samarakoon SR, Soysa P, Karunaratne V, Amaratunga GAJ, et al. Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells. 2016;2016.
Li P, Dai Y, Zhang J, Wang A, Wei Q. Chitosan-Alginate Nanoparticles as a Novel Drug Delivery System for Nifedipine. 2008;4(3):221–8.
Khan MA, Yue C, Fang Z, Bakry AM, Liang L, Hu S. Alginate / chitosan-coated zein nanoparticles for the delivery of resveratrol. J Food Eng [Internet]. 2019;258(March):45–53. Available from: https://doi.org/10.1016/j.jfoodeng.2019.04.010
Marty J, Oppenheim R, Speiser P. Nanoparticles- a new colloidal drug delivery system. Pharm Acta Helv [Internet]. 1978;53 (1):17–23. Available from: https://pubmed.ncbi.nlm.nih.gov/643885/
Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. 2000;194:91–102.
Karimi M, Avci P, Mobasseri R, Hamblin MR, Naderi-manesh H. The novel albumin – chitosan core – shell nanoparticles for gene delivery : preparation , optimization and cell uptake investigation. 2013;
Li Y, Song H, Xiong S, Tian T, Liu T, Sun Y. SC. Int J Biol Macromol [Internet]. 2017; Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.12.104
Piazzini V, Landucci E, Ambrosio MD, Tiozzo L, Cinci L, Colombo G, et al. International Journal of Biological Macromolecules Chitosan coated human serum albumin nanoparticles : A promising strategy for nose-to-brain drug delivery. Int J Biol Macromol [Internet]. 2019;129:267–80. Available from: https://doi.org/10.1016/j.ijbiomac.2019.02.005
Razi MA, Wakabayashi R, Goto M, Kamiya N. Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery. Langmuir. 2019;35:2610–8.
Varshosaz J, Hassanzadeh F, Sadeghi H, Khan ZG, Rostami M. Retinoic Acid Decorated Albumin-Chitosan Nanoparticles for Targeted Delivery of Doxorubicin Hydrochloride in Hepatocellular Carcinoma. 2013;2013(2).
Patel A, Patel M, Yang X, Mitra A. Recent Advances in Protein and Peptide Drug Delivery: A Special Emphasis on Polymeric Nanoparticles. Protein Pept Lett. 2014 Oct;21(11):1102–20.
Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Vol. 11, Drug Delivery and Translational Research. Springer; 2021. p. 1–23.
Jao D, Xue Y, Medina J, Hu X. Protein-based drug-delivery materials. Vol. 10, Materials. MDPI AG; 2017.
Ferraro V, Anton M, Santé-Lhoutellier V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Vol. 51, Trends in Food Science and Technology. Elsevier Ltd; 2016. p. 65–75.
Wang B, Yang W, McKittrick J, Meyers MA. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Vol. 76, Progress in Materials Science. Elsevier Ltd; 2016. p. 229–318.
McKittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyers MA. The structure, functions, and mechanical properties of keratin. JOM. 2012 Apr;64(4):449–68.
Han S, Ham TR, Haque S, Sparks JL, Saul JM. Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater. 2015 Sep;23:201–13.
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, et al. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnology. 2018 Mar;16(1):24.
Posati T, Giuri D, Nocchetti M, Sagnella A, Gariboldi M, Ferroni C, et al. Keratin-hydrotalcites hybrid films for drug delivery applications. Eur Polym J. 2018 Aug;105:177–85.
Ricard-Blum S. The Collagen Family. Cold Spring Harb Perspect Biol. 2011 Jan;3(1):1–19.
Friess W. Collagen - Biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45(2):113–36.
Gil CSB, Gil VSB, Carvalho SM, Silva GR, Magalhães JT, Oréfice RL, et al. Recycled collagen films as biomaterials for controlled drug delivery. New J Chem. 2016 Oct;40(10):8502–10.
Georgiana M, Titorencu I, Violeta M. Collagen-Based Drug Delivery Systems for Tissue Engineering. In: Biomaterials Applications for Nanomedicine. InTech; 2011.
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Vol. 8, Acta Pharmaceutica Sinica B. Chinese Academy of Medical Sciences; 2018. p. 34–50.
Foox M, Zilberman M. Drug delivery from gelatin-based systems. Vol. 12, Expert Opinion on Drug Delivery. Taylor and Francis Ltd; 2015. p. 1547–63.
Santoro M, Tatara AM, Mikos AG. Gelatin carriers for drug and cell delivery in tissue engineering. Vol. 190, Journal of Controlled Release. Elsevier B.V.; 2014. p. 210–8.
Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016 Dec;4(1).
Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, et al. Albumin nanostructures as advanced drug delivery systems. Vol. 13, Expert Opinion on Drug Delivery. Taylor and Francis Ltd; 2016. p. 1609–23.
Rahimizadeh P, Yang S, Lim SI. Albumin: An Emerging Opportunity in Drug Delivery. Vol. 25, Biotechnology and Bioprocess Engineering. Korean Society for Biotechnology and Bioengineering; 2020. p. 985–95.
Labib G. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering. Vol. 15, Expert Opinion on Drug Delivery. Taylor and Francis Ltd; 2018. p. 65–75.
Yu X, Wu H, Hu H, Dong Z, Dang Y, Qi Q, et al. Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer. Drug Deliv. 2020 Jan;27(1):100–9.
Elzoghby A, Freag M, Mamdouh H, Elkhodairy K. Zein-based Nanocarriers as Potential Natural Alternatives for Drug and Gene Delivery: Focus on Cancer Therapy. Curr Pharm Des. 2018 Jan;23(35).
Dong F, Dong X, Zhou L, Xiao H, Ho PY, Wong MS, et al. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake. Colloids Surfaces B Biointerfaces. 2016 Apr;140:324–31.
Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DVN, et al. Silk fibroin-based biomaterials for biomedical applications: A review. Vol. 11, Polymers. MDPI AG; 2019.
Bhuyan D, Greene GW, Das RK. Dataset on the synthesis and physicochemical characterization of blank and curcumin encapsulated sericin nanoparticles obtained from Philosamia ricini silkworm cocoons. Data Br. 2019 Oct;26:104359.
Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. Vol. 190, Journal of Controlled Release. Elsevier; 2014. p. 381–97.
Din Wani SU, Veerabhadrappa GH. Silk Fibroin Based Drug Delivery Applications: Promises and Challenges. Curr Drug Targets. 2017 Dec;19(10):1177–90.
Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials. 2015 Jan;39:105–13.
Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater. 2010 Feb;11(1):014104.
Kundu J, Chung Y Il, Kim YH, Tae G, Kundu SC. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm. 2010 Mar;388(1–2):242–50.
Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm. 2010 Jan;385(1–2):143–9.
Khatik R, Dwivedi P, Khare P, Kansal S, Dube A, Mishra PR, et al. Development of targeted 1,2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Expert Opin Drug Deliv. 2014;11(5):633–46.
Zhao YZ, Jin RR, Yang W, Xiang Q, Yu WZ, Lin Q, et al. Using gelatin nanoparticle mediated intranasal delivery of neuropeptide substance P to enhance neuro-recovery in hemiparkinsonian rats. PLoS One. 2016 Feb;11(2).
Abbasi S, Paul A, Shao W, Prakash S. Cationic Albumin Nanoparticles for Enhanced Drug Delivery to Treat Breast Cancer: Preparation and In Vitro Assessment . J Drug Deliv. 2012 Dec;2012:1–8.
Ren K, Dusad A, Dong R, Quan L. Albumin as a delivery carrier for rheumatoid arthritis. Vol. 4, Journal of Nanomedicine and Nanotechnology. Longdom Publishing SL; 2013. p. 1–3.
Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF- β 1 and. 2021;1–11.
Silva R, Fabry B, Boccaccini AR. Biomaterials Fibrous protein-based hydrogels for cell encapsulation. Biomaterials [Internet]. 2014; Available from: http://dx.doi.org/10.1016/j.biomaterials.2014.04.078
Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz JA, Roether JA, et al. International Journal of Biological Macromolecules Soft-matrices based on silk fibroin and alginate for tissue engineering. Int J Biol Macromol [Internet]. 2016;93:1420–31. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016.04.045
Wolf G. Friedrich Miescher: The man who discovered DNA. Chem Herit. 2003;21:10–1, 37–41.
Levene P. The structure of yeast nucleic acid. IV. Ammonia hydrolysis. J Biol Chem. 1919;40:415–24.
Pray LA. Discovery of DNA Structure and Function: Watson and Crick. Nat Educ. 2008;1(1):100.
Wivel NA, Wilson JM. METHODS OF GENE DELIVERY. 1998;12(3):483–501.
Zhu X, Ye H, Liu J, Yu R, Jiang J. Multivalent Self-Assembled DNA Polymer for Tumor-Targeted Delivery and Live Cell Imaging of Telomerase Activity. 2018;
Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev [Internet]. 2020; Available from: https://doi.org/10.1016/j.addr.2020.07.018
Iqbal M, Lin W, Jabbal-gill I, Davis SS, Steward MW, Illum L. Nasal delivery of chitosan – DNA plasmid expressing epitopes of respiratory syncytial virus ( RSV ) induces protective CTL responses in BALB / c mice. 2003;21:1478–85.
Du X, Zhao B, Li J, Cao X, Diao M, Feng H, et al. International Immunopharmacology Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol [Internet]. 2012;14(4):463–70. Available from: http://dx.doi.org/10.1016/j.intimp.2012.09.006
Toussaint JF, Dubois A, Dispas M, Paquet D, Letellier C, Kerkhofs P. Delivery of DNA vaccines by agarose hydrogel implants facilitates genetic immunization in cattle. 2007;25:1167–74.
DOI: https://doi.org/10.22146/farmaseutik.v19i1.75666
Article Metrics
Abstract views : 3084 | views : 6624Refbacks
- There are currently no refbacks.