In Situ Gel Termosensitif sebagai Sistem Penghantaran Obat Pintar: Formulasi dan Aplikasi

https://doi.org/10.22146/farmaseutik.v19i3.85641

Umaimatun Nakhil(1*), Ronny Martien(2), Adhyatmika Adhyatmika(3)

(1) Mgaister Ilmu Farmasi Universitas Gadjah Mada
(2) Departemen Farmasetika Universitas Gadjah Mada
(3) Pusat Riset Drug Targetting and Personalized Medicine Fakultas Farmasi Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Sistem penghantaran obat menggunakan gel mulai banyak berkembang salah satunya in situ gel. Bentuk sediaan ini menarik untuk dikembangkan karena hanya melibatkan transisi bentuk (sol-gel) sederhana tanpa adanya reaksi kimia. In situ gel termosensitif merupakan jenis sediaan in situ gel yang berbentuk larutan pada suhu ruang namun berubah menjadi gel pada suhu tubuh. Polimer basis yang digunakan pada formulasi in situ gel memiliki karakteristik khas yakni bersifat termosensitif. Artikel review ini bertujuan untuk membahas berbagai jenis polimer termosensitif dan mekanisme gelasinya serta aplikasi bidang medis dari in situ gel termosensitif. Polimer termosensitif memiliki sifat reserve gelation atau mengalami gelasi pada peningkatan suhu karena pengaruh kesetimbangan gugus hidrofil dan hidrofob dalam strukturnya. Sediaan in situ gel memberikan keleluasaan penggunaan dan modifkasi profil pelepasan obat dibandingkan sediaan konvensional. Beberapa karakteristik penting yang perlu diperhatikan pada desain sediaan ini diantaranya adalah suhu gelasi, mukoadesivitas, dan reologi. Sediaan in situ gel telah dikembangkan untuk sistem penghantaran berbagai obat seperti bukal dan sublingual, nasal, dan okular.


Keywords


gelasi; in situ gel; polimer; termosensitif, termoreversibel

Full Text:

PDF


References

Abdulla, N. A., Balata, G. F., El-ghamry, H. A., & Gomaa, E. (2021). Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement. Saudi Pharmaceutical Journal, 29(12), 1466–1485. https://doi.org/10.1016/j.jsps.2021.11.006

Ahmad, N., Ahmad, R., Ahmad, F. J., Ahmad, W., Alam, M. A., Amir, M., & Ali, A. (2020). Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi Journal of Biological Sciences, 27(1), 500–517. https://doi.org/10.1016/j.sjbs.2019.11.008

Ahmad, U., Sohail, M., Ahmad, M., Minhas, M. U., Khan, S., Hussain, Z., Kousar, M., Mohsin, S., Abbasi, M., Shah, S. A., & Rashid, H. (2019). Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. International Journal of Biological Macromolecules, 129, 233–245. https://doi.org/10.1016/j.ijbiomac.2019.02.031

Alami-Milani, M., Salatin, S., Rayeni, F. S., & Jelvehgari, M. (2021). Preparation and in vitro evaluation of thermosensitive and mucoadhesive hydrogels for intranasal delivery of phenobarbital sodium. Therapeutic Delivery, 12(6), 461–475. https://doi.org/10.4155/tde-2021-0022

Allam, A. A., Eleraky, N. E., Diab, N. H., Elsabahy, M., Mohamed, S. A., Abdel-Ghaffar, H. S., Hassan, N. A., Shouman, S. A., Omran, M. M., Hassan, S. B., & Eissa, N. G. (2022). Development of Sedative Dexmedetomidine Sublingual In Situ Gels: In Vitro and In Vivo Evaluations. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020220

Bahmanpour, A. H., Ghaffari, M., Milan, P. B., Moztarzadeh, F., & Mozafari, M. (2021). Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin. Biotechnology and Applied Biochemistry, 68(2), 247–256. https://doi.org/10.1002/bab.1917

Bhalerao, H., Koteshwara, K., & Chandran, S. (2020). Design, optimisation and evaluation of in situ gelling nanoemulsion formulations of brinzolamide. Drug Delivery and Translational Research, 10(2), 529–547. https://doi.org/10.1007/s13346-019-00697-0

Bonnet, M., Trimaille, T., Brezun, J. M., Feron, F., Gigmes, D., Marqueste, T., & Decherchi, P. (2020). Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. Materials Science and Engineering C, 107(April 2019). https://doi.org/10.1016/j.msec.2019.110354

Brambilla, E., Locarno, S., Gallo, S., Orsini, F., Pini, C., Farronato, M., Thomaz, D. V., Lenardi, C., Piazzoni, M., & Tartaglia, G. (2022). Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the Chemical-Physical Properties. Polymers, 14(17). https://doi.org/10.3390/polym14173624

Carvalho, J. D. dos S., Rabelo, R. S., & Hubinger, M. D. (2022). Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. International Journal of Biological Macromolecules, 209(November 2021), 367–375. https://doi.org/10.1016/j.ijbiomac.2022.04.035

Cespi, M., Bonacucina, G., Tiboni, M., Casettari, L., Cambriani, A., Fini, F., Perinelli, D. R., & Palmieri, G. F. (2021). Insights in the rheological properties of PLGA-PEG-PLGA aqueous dispersions: Structural properties and temperature-dependent behaviour. Polymer, 213(October 2020). https://doi.org/10.1016/j.polymer.2020.123216

Chaudhari, P., Shetty, D., & Lewis, S. A. (2022). Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. Journal of Drug Delivery Science and Technology, 71(April). https://doi.org/10.1016/j.jddst.2022.103327

Cirri, M., Maestrelli, F., Nerli, G., Mennini, N., D’ambrosio, M., Luceri, C., & Mura, P. A. (2021). Development of a cyclodextrin-based mucoadhesive-thermo-sensitive in situ gel for clonazepam intranasal delivery. Pharmaceutics, 13(7). https://doi.org/10.3390/pharmaceutics13070969

Corazza, E., di Cagno, M. P., Bauer-Brandl, A., Abruzzo, A., Cerchiara, T., Bigucci, F., & Luppi, B. (2022). Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. European Journal of Pharmaceutical Sciences, 179(September), 106294. https://doi.org/10.1016/j.ejps.2022.106294

Diañez, I., Gallegos, C., Brito-de la Fuente, E., Martínez, I., Valencia, C., Sánchez, M. C., Diaz, M. J., & Franco, J. M. (2019). 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids, 87(August 2018), 321–330. https://doi.org/10.1016/j.foodhyd.2018.08.010

Diaz-Salmeron, R., Toussaint, B., Huang, N., Bourgeois Ducournau, E., Alviset, G., Goulay Dufaÿ, S., Hillaireau, H., Dufaÿ Wojcicki, A., & Boudy, V. (2021). Mucoadhesive poloxamer-based hydrogels for the release of HP-β-cd-complexed dexamethasone in the treatment of buccal diseases. Pharmaceutics, 13(1), 1–26. https://doi.org/10.3390/pharmaceutics13010117

Fabri, F. V., Cupertino, R. R., Hidalgo, M. M., Monteiro Weffort De Oliveira, R. M., & Bruschi, M. L. (2011). Preparation and characterization of bioadhesive systems containing propolis or sildenafil for dental pulp protection. Drug Development and Industrial Pharmacy, 37(12), 1446–1454. https://doi.org/10.3109/03639045.2011.584387

Filion, D., & Buschmann, M. D. (2013). Chitosan-glycerol-phosphate (GP) gels release freely diffusible GP and possess titratable fixed charge. Carbohydrate Polymers, 98(1), 813–819. https://doi.org/10.1016/j.carbpol.2013.06.055

Fiqri, M. Al, Alhidayah, Nirmayanti, Athiyyah, U., Layadi, P., Angeleve Fadjar, T. G., & Permana, A. D. (2022). Enhanced localization of cefazoline sodium in the ocular tissue using thermosensitive-mucoadhesive hydrogels: Formulation development, hemocompatibility and in vivo irritation studies. Journal of Drug Delivery Science and Technology, 76(August). https://doi.org/10.1016/j.jddst.2022.103763

Gholizadeh, H., Messerotti, E., Pozzoli, M., Cheng, S., Traini, D., Young, P., Kourmatzis, A., Caramella, C., & Ong, H. X. (2019). Application of a Thermosensitive In Situ Gel of Chitosan-Based Nasal Spray Loaded with Tranexamic Acid for Localised Treatment of Nasal Wounds. AAPS PharmSciTech, 20(7), 1–12. https://doi.org/10.1208/s12249-019-1517-6

Giuliano, E., Fresta, M., & Cosco, D. (2021). Development and characterization of poloxamine 908-hydrogels for potential pharmaceutical applications. Journal of Molecular Liquids, 337. https://doi.org/10.1016/j.molliq.2021.116588

Gratieri, T., Gelfuso, G. M., De Freitas, O., Rocha, E. M., & Lopez, R. F. V. (2011). Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. European Journal of Pharmaceutics and Biopharmaceutics, 79(2), 320–327. https://doi.org/10.1016/j.ejpb.2011.05.006

Huang, W., Zhang, N., Hua, H., Liu, T., Tang, Y., Fu, L., Yang, Y., Ma, X., & Zhao, Y. (2016). Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomedicine and Pharmacotherapy, 83, 107–113. https://doi.org/10.1016/j.biopha.2016.06.024

Izquierdo, S., Melia Rodrigo, M., Gonzalez-Arellano, C., Benito, J. M., Fernández, J. M. G., Mendicuti, F., & Marcelo, G. (2023). In situ preparation of PNIPAM biphasic hydrogels. European Polymer Journal, 192(April). https://doi.org/10.1016/j.eurpolymj.2023.112067

Jeong, B., Kim, S. W., & Bae, Y. H. (2012). Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews, 64(SUPPL.), 154–162. https://doi.org/10.1016/j.addr.2012.09.012

Karavasili, C., & Fatouros, D. G. (2016). Smart materials: In situ gel-forming systems for nasal delivery. Drug Discovery Today, 21(1), 157–166. https://doi.org/10.1016/j.drudis.2015.10.016

Kassem, A. A., Ismail, F. A., Naggar, V. F., & Aboulmagd, E. (2014). Comparative study to investigate the effect of meloxicam or minocycline HCl in situ gel system on local treatment of periodontal pockets. AAPS PharmSciTech, 15(4), 1021–1028. https://doi.org/10.1208/s12249-014-0118-7

Khattab, A., Marzok, S., & Ibrahim, M. (2019). Development of optimized mucoadhesive thermosensitive pluronic based in situ gel for controlled delivery of Latanoprost: Antiglaucoma efficacy and stability approaches. Journal of Drug Delivery Science and Technology, 53(June). https://doi.org/10.1016/j.jddst.2019.101134

Khodaei, T., Nourmohammadi, J., Ghaee, A., & Khodaii, Z. (2023). An antibacterial and self-healing hydrogel from aldehyde-carrageenan for wound healing applications. Carbohydrate Polymers, 302(November 2022). https://doi.org/10.1016/j.carbpol.2022.120371

Kolawole, O. M., Lau, W. M., & Khutoryanskiy, V. V. (2019). Chitosan/β-glycerophosphate in situ gelling mucoadhesive systems for intravesical delivery of mitomycin-C. International Journal of Pharmaceutics: X, 1(February). https://doi.org/10.1016/j.ijpx.2019.100007

Lai, J., & Luo, L. (2017). Chitosan-g-poly ( N-isopropylacrylamide ) copolymers as delivery carriers for intracameral pilocarpine administration. European Journal of Pharmaceutics and Biopharmaceutics, 113, 140–148.

Lai, J. Y. (2013). Biodegradable in situ gelling delivery systems containing pilocarpine as new antiglaucoma formulations: Effect of a mercaptoacetic acid/ N-isopropylacrylamide molar ratio. Drug Design, Development and Therapy, 7, 1273–1285. https://doi.org/10.2147/DDDT.S53759

Liao, J., Wang, Y., Hou, B., Zhang, J., & Huang, H. (2023). Nano-chitin reinforced agarose hydrogels: Effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydrate Polymers, 313(April). https://doi.org/10.1016/j.carbpol.2023.120902

Maiz-Fernández, S., Guaresti, O., Pérez-Álvarez, L., Ruiz-Rubio, L., Gabilondo, N., Vilas-Vilela, J. L., & Lanceros-Mendez, S. (2020). β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers, 248(July). https://doi.org/10.1016/j.carbpol.2020.116811

Morsi, N., Ghorab, D., Refai, H., & Teba, H. (2016). Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. International Journal of Pharmaceutics, 506(1–2), 57–67. https://doi.org/10.1016/j.ijpharm.2016.04.021

Nižić, L., Ugrina, I., Špoljarić, D., Saršon, V., Kučuk, M. S., Pepić, I., & Hafner, A. (2019). Innovative sprayable in situ gelling fluticasone suspension: Development and optimization of nasal deposition. International Journal of Pharmaceutics, 563(April), 445–456. https://doi.org/10.1016/j.ijpharm.2019.04.015

Omar, M. M., Eleraky, N. E., El Sisi, A. M., & Hasan, O. A. (2019). Development and evaluation of in-situ nasal gel formulations of nanosized transferosomal sumatriptan: Design, optimization, in vitro and in vivo evaluation. Drug Design, Development and Therapy, 13, 4413–4430. https://doi.org/10.2147/DDDT.S235004

Permana, A. D., Utami, R. N., Layadi, P., Himawan, A., Juniarti, N., Anjani, Q. K., Utomo, E., Mardikasari, S. A., Arjuna, A., & Donnelly, R. F. (2021). Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. International Journal of Pharmaceutics, 602(March). https://doi.org/10.1016/j.ijpharm.2021.120623

Salehi, R., Ebrahimi-Hosseinzadeh, B., Hatamian-Zarmi, A., Sahraeian, R., Alvandi, H., Mokhtari-Hosseini, Z. B., & Ansari, E. (2022). In situ forming thermosensitive vaginal hydrogels containing curcumin-loaded polymeric nanoparticles with their sustained release: rheological measurements and cytotoxicity effect on cervix cancer cell. Iranian Polymer Journal (English Edition), 31(12), 1495–1510. https://doi.org/10.1007/s13726-022-01093-1

Sanz, T., Falomir, M., & Salvador, A. (2015). Reversible thermal behaviour of vegetable oil cellulose ether emulsions as fat replacers. Influence of glycerol. Food Hydrocolloids, 46, 19–27. https://doi.org/10.1016/j.foodhyd.2014.11.030

Sheshala, R., Quah, S. Y., Tan, G. C., Meka, V. S., Jnanendrappa, N., & Sahu, P. S. (2019). Investigation on solution-to-gel characteristic of thermosensitive and mucoadhesive biopolymers for the development of moxifloxacin-loaded sustained release periodontal in situ gels. Drug Delivery and Translational Research, 9(2), 434–443. https://doi.org/10.1007/s13346-018-0488-6

Silva, A. R. S. T., Costa, A. M. B., Jain, S., Severino, P., Scher, R., Nunes, R. S., Souto, E. B., & Dolabella, S. S. (2023). 3-Carene-loaded poloxamer micelles against Leishmania: Development, characterization and in vitro proof-of-concept. Journal of Drug Delivery Science and Technology, 82(December 2022), 104376. https://doi.org/10.1016/j.jddst.2023.104376

Szalai, B., Jójárt-Laczkovich, O., Kovács, A., Berkó, S., Balogh, G. T., Katona, G., & Budai-Szűcs, M. (2022). Design and Optimization of In Situ Gelling Mucoadhesive Eye Drops Containing Dexamethasone. Gels, 8(9). https://doi.org/10.3390/gels8090561

Thomas, J. D., Fussell, G., Sarkar, S., Lowman, A. M., & Marcolongo, M. (2010). Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomaterialia, 6(4), 1319–1328. https://doi.org/10.1016/j.actbio.2009.10.024

Upadhayay, P., Kumar, M., & Pathak, K. (2016). Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity. Iranian Journal of Pharmaceutical Research, 15(1), 3–22.

Verekar, R. R., Gurav, S. S., & Bolmal, U. (2020). Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: Formulation, characterization, and evaluation. Journal of Drug Delivery Science and Technology, 58(December 2019). https://doi.org/10.1016/j.jddst.2020.101778

Vigani, B., Rossi, S., Gentile, M., Sandri, G., Bonferoni, M. C., Cavalloro, V., Martino, E., Collina, S., & Ferrari, F. (2019). Development of a mucoadhesive and an in situ gelling formulation based on κ-carrageenan for application on oral mucosa and esophagus walls. II. Loading of a bioactive hydroalcoholic extract. Marine Drugs, 17(3). https://doi.org/10.3390/md17030153

Vigani, B., Rossi, S., Sandri, G., Bonferoni, M. C., Caramella, C. M., & Ferrari, F. (2020). Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics, 12(9), 1–29. https://doi.org/10.3390/pharmaceutics12090859

Yuan, T. Z., & Ai, Y. (2022). Pasting and gelation behaviors and in vitro digestibility of high-amylose maize starch blended with wheat or potato starch evaluated at different heating temperatures. Food Hydrocolloids, 131(April). https://doi.org/10.1016/j.foodhyd.2022.107783

Zentner, G. M., Rathi, R., Shih, C., McRea, J. C., Seo, M. H., Oh, H., Rhee, B. G., Mestecky, J., Moldoveanu, Z., Morgan, M., & Weitman, S. (2001). Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. Journal of Controlled Release, 72(1–3), 203–215. https://doi.org/10.1016/S0168-3659(01)00276-0

Zhao, Y., Wang, T., Chen, Z., Ren, H., Song, P., Zhu, Y., Liang, S., & Tzeng, C. (2022). Development and Evaluation of a Thermosensitive In Situ Gel Formulation for Intravaginal Delivery of Lactobacillus gasseri. Pharmaceutics, 14(9). https://doi.org/10.3390/pharmaceutics14091934



DOI: https://doi.org/10.22146/farmaseutik.v19i3.85641

Article Metrics

Abstract views : 2572 | views : 3729

Refbacks



Majalah Farmaseutik Indexed by:

   
 
Creative Commons Licence
 
 
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.