The Role of Antioxidant Therapy in the Management of Type 2 Diabetes Mellitus: A Literature Review

https://doi.org/10.22146/rpcpe.104276

Dewa Ayu Agung Alit Suka Astini(1*), I Wayan Putu Sutirta Yasa(2), I Made Jawi(3), I Nyoman Wande(4)

(1) Doctoral Program; Faculty of Medicine; Universitas Udayana
(2) Anatomy Departement; Faculty of Medicine and Health Sciences; Universitas Warmadewa
(3) Clinical Pathology Department; Faculty of Medicine; Universitas Udayana
(4) Pharmacology Department; Faculty of Medicine; Universitas Udayana
(*) Corresponding Author

Abstract


Background: Type 2 diabetes mellitus (T2DM) is a metabolic disease and has become a global problem due to the rapid increase in the number of cases. This disease is characterized by chronic hyperglycemia caused by insulin resistance and pancreatic beta cell dysfunction. The occurrence of oxidative stress is known to play a central role in the development of T2DM complications, through increased reactive oxygen species (ROS) that worsen insulin resistance, worsen beta cell function, and trigger complications such as cardiovascular complications, nephropathy, and neuropathy. Objectives: This literature review aims to evaluate the scientific evidence supporting the use of antioxidant therapy as an additional approach in the management of T2DM, focusing on the effectiveness and mechanism of action of antioxidant compounds on glycemic parameters, oxidative stress, and diabetes complications. Methods: A literature search was conducted through databases on ScienceDirect, PubMed, and Google Scholar, with the keywords "antioxidant therapy", "type 2 diabetes mellitus", "oxidative stress", and "diabetes management". The selected articles included in vitro, in vivo studies, and clinical trials published in the period 2013-2023. Literature review focused on the biochemical mechanisms of antioxidant compounds and clinical outcomes related to glycemic parameters and diabetes complications. The literature extraction process was carried out from January to March 2024. Results: Supplementation of vitamin D, vitamin E, vitamin C, polyphenols, saponins, and flavonoids has been proven to reduce blood glucose levels and increase insulin sensitivity in type 2 diabetes mellitus. The mechanism involves increasing antioxidant activity, regulating glucose homeostasis, as well as modulating signaling pathways such as AMPK, PPAR, and GLUT4. Conclusions: This bioactive compound has potential as an adjunct therapy in the management of type 2 diabetes mellitus by targeting oxidative stress and insulin resistance. Further research is needed to determine optimal dosage and long-term effectiveness.

Keywords


Adjuvant therapy; antioxidants; diabetic complications; oxidative stress; type 2 diabetes mellitus

Full Text:

PDF


References

  1. Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10(4):174–88. doi:10.4103/ajm.ajm_53_20.
  2. Dilworth L, Facey A, Omoruyi F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int J Mol Sci. 2021;22(14):7644. doi:10.3390/ijms22147644.
  3. Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, et al. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651–66. doi:10.3390/cimb45080420.
  4. Tuell DS, Los EA, Ford GA, Stone WL. The role of natural antioxidant products that optimize redox status in the prevention and management of type 2 diabetes. Antioxidants. 2023;12(6):1139. doi:10.3390/antiox12061139.
  5. Rajendiran D, Packirisamy S, Gunasekaran K. A review on role of antioxidants in diabetes. Asian J Pharm Clin Res. 2018;11(2):48–53. doi:10.22159/ajpcr.2018.v11i2.23241.
  6. Shrivastav D, Dabla PK, Sharma J, Viswas A, Mir R. Insights on antioxidant therapeutic strategies in type 2 diabetes mellitus: A narrative review of randomized control trials. World J Diabetes. 2023;14(6):919–29. doi:10.4239/wjd.v14.i6.919.
  7. Ceriello A, Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S316–21. doi:10.2337/dc09-s316.
  8. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr Diab Rep. 2014;14(1):1–17. doi:10.1007/s11892-013-0453-1.
  9. Nikooyeh B, Neyestani TR, Tayebinejad N, Alavi-Majd H, Shariatzadeh N, Kalayi A, et al. Daily intake of vitamin D- or calcium-vitamin D-fortified Persian yogurt drink (doogh) attenuates diabetes-induced oxidative stress: Evidence for antioxidative properties of vitamin D. J Hum Nutr Diet. 2014;27(Suppl 2):276–83. doi:10.1111/jhn.12142.
  10. Krisnamurti DGB, Louisa M, Poerwaningsih EH, Tarigan TJE, Soetikno V, Wibowo H, et al. Vitamin D supplementation alleviates insulin resistance in prediabetic rats by modifying IRS-1 and PPARγ/NF-κB expressions. Front Endocrinol (Lausanne). 2023;14:1089298. doi:10.3389/fendo.2023.1089298.
  11. Rehman K, Saeed K, Munawar SM, Akash MSH. Resveratrol regulates hyperglycemia-induced modulations in experimental diabetic animal model. Biomed Pharmacother. 2018;102:140–6. doi:10.1016/j.biopha.2018.03.050.
  12. El-Aal AA, El-Ghffar EAA, Ghali AA, Zughbur MR, Sirdah MM. The effect of vitamin C and/or E supplementations on type 2 diabetic adult males under metformin treatment: A single-blinded randomized controlled clinical trial. Diabetes Metab Syndr Clin Res Rev. 2018;12(4):483–9. doi:10.1016/j.dsx.2018.03.013.
  13. Gillani SW, Sulaiman SAS, Abdul MIM, Baig MR. Combined effect of metformin with ascorbic acid versus acetyl salicylic acid on diabetes-related cardiovascular complication: A 12-month single-blind multicenter randomized control trial. Cardiovasc Diabetol. 2017;16(1):103. doi:10.1186/s12933-017-0584-9.
  14. Mason SA, Della Gatta PA, Snow RJ, Russell AP, Wadley GD. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study. Free Radic Biol Med. 2016;93:227–38. doi:10.1016/j.freeradbiomed.2016.01.006.
  15. Mahjabeen W, Khan DA, Mirza SA. Role of resveratrol supplementation in regulation of glucose homeostasis, inflammation, and oxidative stress in patients with type 2 diabetes mellitus: A randomized, placebo-controlled trial. Complement Ther Med. 2022;66:102819. doi:10.1016/j.ctim.2022.102819.
  16. Srinivasan P, Vijayakumar S, Kothandaraman S, Palani M. Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches. J Pharm Anal. 2018;8(2):109–18. doi:10.1016/j.jpha.2017.10.005.
  17. Yang DK, Kang HS. Anti-diabetic effect of co-treatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol Ther. 2018;26(2):130–8. doi:10.4062/biomolther.2017.254.
  18. Luyen NT, Dang NH, Binh PTX, Hai NT, Dat NT. Hypoglycemic property of triterpenoid saponin pfs isolated from Polyscias fruticosa leaves. An Acad Bras Cienc. 2018;90(3):2881–6. doi:10.1590/0001-3765201820170945.
  19. Xu J, Wang S, Feng T, Chen Y, Yang G. Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. J Cell Mol Med. 2018;22(12):6026–38. doi:10.1111/jcmm.13876.
  20. Bak EJ, Kim J, Choi YH, Kim JH, Lee DE, Woo GH, et al. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin Nutr. 2014;33(1):156–63. doi:10.1016/j.clnu.2013.03.013.
  21. Rowley TJ, Bitner BF, Ray JD, Lathen DR, Smithson AT, Dallon BW, et al. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. J Nutr Biochem. 2017;49:30–41. doi:10.1016/j.jnutbio.2017.07.015.
  22. Bowser SM, Moore WT, McMillan RP, Dorenkott MR, Goodrich KM, Ye L, et al. High-molecular-weight cocoa procyanidins possess enhanced insulin-enhancing and insulin-mimetic activities in human primary skeletal muscle cells compared to smaller procyanidins. J Nutr Biochem. 2017;39:48–58. doi:10.1016/j.jnutbio.2016.10.001.
  23. Cordero-Herrera I, Martín MÁ, Fernández-Millán E, Álvarez C, Goya L, Ramos S. Cocoa and cocoa flavanol epicatechin improve hepatic lipid metabolism in in vivo and in vitro models: Role of PKCζ. J Funct Foods. 2015;17:761–73. doi:10.1016/j.jff.2015.06.033.
  24. Chen C, Luo Y, Su Y, Teng L. The vitamin D receptor (VDR) protects pancreatic beta cells against Forkhead box class O1 (FOXO1)-induced mitochondrial dysfunction and cell apoptosis. Biomed Pharmacother. 2019;117:109170. doi:10.1016/j.biopha.2019.109170.
  25. Suffi N, Franco FN, Chaves MM, Araújo GR. Resveratrol acts as an antioxidant in leukocytes of patients with type 2 diabetes mellitus through the AMPK signaling pathway. Braz J Health Rev. 2024;7(2):e67982. doi:10.34119/bjhrv7n2-080.
  26. Ramachandran V, Saravanan R. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats. Hum Exp Toxicol. 2015;34(9):884–93. doi:10.1177/0960327114561663.
  27. Rabizadeh S, Heidari F, Karimi R, Rajab A, Rahimi-Dehgolan S, Yadegar A, et al. Vitamin C supplementation lowers advanced glycation end products (AGEs) and malondialdehyde (MDA) in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. Food Sci Nutr. 2023;11(10):5967–77. doi:10.1002/fsn3.3530.
  28. Cao MM, Lu X, Liu GD, Su Y, Li YB, Zhou J. Resveratrol attenuates type 2 diabetes mellitus by mediating mitochondrial biogenesis and lipid metabolism via sirtuin type 1. Exp Ther Med. 2018;15(1):576–84. doi:10.3892/etm.2017.5400.
  29. Yamada Y, Saito H, Araki M, Tsuchimoto Y, Muroi SI, Suzuki K, et al. Wogonin, a compound in Scutellaria baicalensis, activates ATF4–FGF21 signaling in mouse hepatocyte AML12 cells. Nutrients. 2022;14(19):3920. doi:10.3390/nu14193920.
  30. Wen L, Wu D, Tan X, Zhong M, Xing J, Li W, et al. The role of catechins in regulating diabetes: An updated review. Nutrients. 2022;14(21):4681. doi:10.3390/nu14214681.
  31. Yamashita Y, Wang L, Nanba F, Ito C, Toda T, Ashida H. Procyanidin promotes translocation of glucose transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways. PLoS One. 2016;11(9):e0161704. doi:10.1371/journal.pone.0161704.
  32. Ramos S, Martín MA, Goya L. Effects of cocoa antioxidants in type 2 diabetes mellitus. Antioxidants. 2017;6(4):84. doi:10.3390/antiox6040084.



DOI: https://doi.org/10.22146/rpcpe.104276

Article Metrics

Abstract views : 395 | views : 262

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dewa Ayu Agung Alit Suka Astini, I Wayan Putu Sutirta Yasa, I Made Jawi, I Nyoman Wande

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


 

View My Stats