PENGARUH PENAMBAHAN IRON MILL-SCALE DAN TEMBAGA SEBAGAI MATERIAL PELAT BIPOLAR

https://doi.org/10.22146/teknosains.36576

Nisya Ulmiah(1*), Fitri Suryani Arsyad(2), Deni Shidqi Khaerudini(3)

(1) Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sriwijaya Palembang, Sumatera Selatan
(2) 
(3) Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia (LIPI)
(*) Corresponding Author

Abstract


Bipolar plate is an important component of proton exchange membrane fuel cell (PEMFC), which provides fuel and oxidant to reactive sites, collect produced current, and mechanical support for the cell in the stacks. This study concerns to find the optimum composition and sintering temperature of iron mills-cale in matrix aluminium as bipolar plate material. This work firstly carried out by downsizing aluminium flake from scrap into powder using high energy milling for 120 min and treated the iron mill-scale at 300 and 1000 oC for 60 min. The waste aluminium powder, after sieving of 150 mesh, was mixing with iron mill-scale containing 30 to 50 vol.% using shaker mill for 10 min. The mixed powders were then pressed 300 MPa and sintered with temperature of 500-600 oC for 60 min and flowed with N2 gas. The structural changes, physical, and mechanical properties of the sintered sample were studied by optical micrograph, density, porosity, hardness Vickers, and electrical conductivity test. The result showed that the optimum composition Fe is 40 vol. % and sinter temperature is 550 oC. Conductivity value of 45.406 S/cm and hardness 183.96 HV hasn’t meet expectation. Cu added containing 4-10 vol. % Fe aims to improve physical properties composites as bipolar plate material PEMFC. The result showed Cu 4 vol. % Fe can increase conductivity value 64.481 S/cm and hardness 340.13 HV.

Keywords


Aluminium Flake Powder; Bipolar Plates; Composite; Iron Mill-Scale

Full Text:

PDF


References

Abdullah, M. 2008. Nanosains dan Naoteknologi. FMIPA Institut Teknologi Bandung.

Anovitz, L.M. dan D.R. Cole, 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy & Geochemistry, 80 (1): 61-164.

Antunes, R.A., M.C.L. Oliveira, G. Ett, dan V. Ett. 2010. Corrosion of Metal Bipolar Plates for PEM Fuel Cells: A Review. International Journal of Hydrogen Energy, 35: 3632-3647.

Baig, M., H.R. Ammar, dan A.H. Seikh. 2015. Thermo-Mechanical Respons of Nanocrystline Al-Fe Alloy Processed Using Mechanical Alloying and High Frequency Heat Induction Sintering. Material Science & Engineering. 655: 132-141.

Cunningham, B. 2007. The development of compression moldable polymer composite bipolar plates for fuel cells. Thesis, Virginia: Faculty of Virginia Polytechnic Institute and State University.

Gundara, G. 2017. Analisis Sifat Fisis dan Mekanis Komposit Serat Gelas Berlapis. FT-UHAMKA, 2: 2502-8782.

Hariyanto, M.L., H. Setiawati, S. Ilmiah, L. Mabruroh, A. Aliyatulmuna, Dan A. Fansuri. 2011. Pengaruh Komposisi Fe Terhadap Konduktivitas Ion Oksigen Pada Oksida Perovskit La0.7Sr0.3Co1-YFeyO3- δ. Prosiding Seminar Nasional Kimia Unesa. ISBN : 978-979-028-378-7.

Heinzel, A., F. Mahlendorf, dan C. Jansen. 2009. Bipolar Plates. Germany: University of Duisburg–Esse, Duisburg.

Javier, M., A. Cores, I.R. Bustina, R.F. Verdeja, J.I. Robla, dan F.G. Carcedo, 2014. “Iron Ore Sintering part 2. Quality Indices and Productivity. Dyne. 81 (183): 168-177.

Joo, S. H., H. I. Lee, dan D. J. You. 2008. Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon, 46 (15) : 2034–2045.

Karimi, S., N. Fraser, B. Roberts, dan F.R. Foulkes. 2012. A Review of Metallic Bipolar Plates for Exchange Membrane Fuel Cells: Materials and Fabrication Methods. Advances in Materials Science and Engineering. 1: 22.

Khaerudini, D.S., G.B. Prakoso, D.R. Insiyanda, H. Widodo, dan N. Indiyaningsih. 2017. Effect of graphite addition into mill scale waste as potential bipolar plates material of proton exchange membrane fuel cells. Journal of Physics.

Mahmoud, M.R.I. dan M.M. Tash, 2016. Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing. Materials. 9 (505).

Mawdsley, J.R., J.D. Carter, X. Wang, S. Niyogi, C.Q. Fan, R. Koc, dan G. Osterhout. 2013. Composite-coated aluminium bipolar plates for PEM fuel cells. Journal of Power Sources. 231: 106-112.

Muhriz, M., Subagio, A., dan Pardoyo. 2011. Pembuatan Zeolit Nanopartikel dengan Metode High Energy Milling (HEM). Jurnal Sains dan Matematika. Vol 19 (1) : 11-17.

Nugroho, R., F. Suryanto, P.N. Rahardjo, T. Hernaningsih, Ikbal, Wiharja, dan T.A. Adibroto. 2014. Laporan Tahunan (ANNUAL REPORT ) 2014 Program Pengkajian dan Penerapan Teknologi Lingkungan. Tangerang Selatan:Pusat Teknologi Lingkungan, Kedeputian Teknologi Pengembangan Sumberdaya Alam, Badan Pengkajian dan Penerapan Teknologi.

Oladoye, A.M., Carton, J.G. Carton, dan A.G. Olabi. 2014. Evaluation of CoBlast Coated Titanium Alloy as Proton Exchange Membrane Fuel Cells Bipolar plates. Journal of Materials, 1: 10.

Pratama, F.B. dan Widyastuti. 2012. Pengaruh Penambahan Ni, Cu dan Al dan Waktu Milling pada Mechanical Alloying Terhadap Sifat Absorpsi dan Desorpsi Mg sebagai Material Penyimpan Hidrogen. Jurnal Teknik ITS. 1 (2012) : 97-101.

Shen, C., M. Pan, Z. Hua, dan R. Yuan. 2007. Aluminate cement/graphite conductive composite bipolar plate for proton exchange membrane fuel cells. Journal of Power Sources. 166 (2) : 419–423.

Susanto, R. Pradiantika, dan T.C.M. Bolle. 2017. Sintesis Nanomaterial Magnetit-Sitrat dan Pengujian Aplikasinya Sebagai Adsorben Emas (III). Jurnal Tekno-Sains. 6(2): 124-125.

Wang, Y. dan D.O. Northwood. 2007. Effects of O2 and H2 on the corrosion of SS316L metallic bipolar plate materials in simulated anode and cathode environments of PEM fuel cells. Electrochimica Acta. 52(24) : 6793–6798.

Yi, Peiyun., Peng, Linfa., Lai, Xinmin., Li, Mutian., dan Ni, Jun. 2012. Investigation of Sintered Stainless Steel Fiber Felt as Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy. 37: 11334-11344.



DOI: https://doi.org/10.22146/teknosains.36576

Article Metrics

Abstract views : 2883 | views : 2147

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Nisya Ulmiah,Fitri Suryani Arsyad, dan Deni Shidqi Khaerudini

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing