Microsoft building footprint application To detect human exposure due to tsunami

https://doi.org/10.22146/teknosains.79526

Andes Saragi(1*), Djati Mardiatno(2), Dyah Rahmawati Hizbaron(3)

(1) Universitas Gadjah Mada
(2) Universitas Gadjah Mada
(3) Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Tsunami events at night are more prone to causing fatalities because humans are resting in residential buildings (houses). In this study, residential buildings were extracted using the Microsoft Building Footprint (MBF), which resulted from applying artificial intelligence technology. This study aims to analyze the number of people exposed to tsunamis at night using MBF. The tsunami modeling was carried out using the Berryman method. Sentinel 2-A Image extracted from Google Earth Engine. The results of the inundation modeling analysis show that the total inundated area is 717 Ha or 17.34% of the total area. The results of the MBF accuracy analysis on the entire data are a Precision of 99.02%, Recall of 98.40%, and F1 score of 98.71%. The results of the MBF error analysis are False Positive 0.97%, False Negative 1.60%, and Intersection of Union 0.12%. The number of people exposed is 2,749, or 6.32% of the total population.


Keywords


Microsoft Building Footprint; Tsunami Model; Human Exposed; Residential Buildings; Google Earth Engine; Sentinel 2-A Image

Full Text:

PDF


References

Alvianingsih, M., Pradipta, W. I., Hayatiningsih, I., & Hanifa, N. R. 2021. Exposures of Building and Population to Tsunami Hazard in Pangandaran Beach, Indonesia. IOP Conference Series: Earth and Environmental Science, 925(1). https://doi.org/10.1088/1755-1315/925/1/012037.

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. 2020. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. DOI: 10.1109/JSTARS.2020.3021052.

Aris Marfai, M., Fatchurohman, H., & Cahyadi, A. 2019. An Evaluation of Tsunami Hazard Modeling in Gunungkidul Coastal Area using UAV Photogrammetry and GIS. Case Study: Drini Coastal Area. E3S Web of Conferences, 125(201 9). DOI: 10.1051/e3sconf/201912509005.

Basith Abdul, Kongko Widjo, O. N. 2016. Pemodelan Spasial Landaan Tsunami Menggunakan Variasi Lokasi Sumber Dan Magnitud Gempa Studi Kasus Kota Padang. Conference on Geospasial Information Science and Engineering.

Badan Nasional Penanggulangan Bencana. 2019. Modul Teknis Penyusunan Kajian Risiko Bencana Tsunami. Direktorat Pengurangan Risiko Bencana. BNPB Jawa Barat.

Badan Pusat Statistik. 2022. Kabupaten Bantul Dalam Angka. BPS Kabupaten Bantul. Accessed on 12 September 2022. Retreived from https://bantulkab.bps.go.id.

Berryman, K. 2006. Review of Tsunami Hazard and Risk in New Zealand. New Zealand: Lower Hutt: Institute of Geological & Nuclear Sciences.

Fakhruddin, B., Kintada, K., & Tilley, L. 2021. Probabilistic tsunami hazard and exposure assessment for the pacific islands- Fiji. International Journal of Disaster Risk Reduction, 64, 102458. DOI: 10.1016/j.ijdrr.2021.102458.

Fauzi. Y. 2021. Pemodelan Potensi Genangan Tsunami Berbasis Pada Ancaman Gempa Bumi Di Zona Subduksi Selatan Jawa. Dissertation, Indonesia: Universitas Gadjah Mada.

Hadi, F., & Astrid, D. (2017). Aplikasi SIG Untuk Pemetaan Zona Keterpaparan Permukiman Terhadap Tsunami Studi Kasus: Kota Pariaman, Sumatera Barat. Seminar Nasional Geomatika, 317–324.

Hizbaron, D. R., Baiquni, M., Sartohadi, J., & Rijanta, R. 2012. Urban Vulnerability in Bantul District, Indonesia—Towards Safer and Sustainable Development. Sustainability, 1, 2022–2037. DOI: 10.3390/su4092022.

Huang, X., Wang, C., Li, Z., & Ning, H. 2021. A 100 m population grid in the CONUS by disaggregating census data with open-source Microsoft building footprints. Big Earth Data, 5(1), 112–133. DOI: 10.1080/20964471.2020.1776200.

Huang, Y., & Jin, Y. 2022. Aerial Imagery-Based Building Footprint Detection with an Integrated Deep Learning Framework: Applications for Fine Scale Wildland–Urban Interface Mapping. Remote Sensing, 14(15). DOI: 10.3390/rs14153622.

Irianti, G. L. 2017. Determining Tsunami Evacuation Building Location and Evacuation Routes Based on Population Dynamic And Human Behaviour In Disaster Evacuation In Pacitan Sub-District Area. Thesis, Indonesia and Nederland: Double Degree M.Sc. Programme Gadjah Mada University and University of Twente.

Kementerian Pekerjaan Umum dan Perumahan Rakyat. 2020. Keputusan Menteri nomor 242/KPTS/M/2020. Jaringan Dokumentasi dan Informasi Hukum Kementerian PUPR. Accessed on 10 September 2022. Retreived from https://jdih.pu.go.id/detail-dokumen/2746/1#div.

Khomarudin, M. R. 2010. Tsunami Risk and Vulnerability: Remote Sensing and GIS Approaches for Surface Roughness Determination, Settlement Mapping and Population Distribution Modelling. Dissertation, Germany: Universitat Munchen: Fakultat Fur Geowissenschaften Der Ludwig.

Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R., Rojali, A., Maher, N., Fuchs, A., Hossen, J., Upi, S., Edi Dewanto, S., Rakowsky, N., & Cummins, P. 2015. An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Frontiers in Earth Science, 3(June), 1–16. DOI: 10.3389/feart.2015.00032.

Liu, P., Liu, X., Liu, M., Shi, Q., Yang, J., Xu, X., & Zhang, Y. 2019. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network. Remote Sensing, 11(7). DOI: 10.3390/rs11070830.

Liu, T., Yao, L., Qin, J., Lu, N., Jiang, H., Zhang, F., & Zhou, C. 2022. Multi-scale attention integrated hierarchical networks for high-resolution building footprint extraction. International Journal of Applied Earth Observation and Geoinformation, 109(February), 102768. DOI: 10.1016/j.jag.2022.102768.

Løvholt, F., Glimsdal, S., Harbitz, C. B., Horspool, N., Smebye, H., de Bono, A., & Nadim, F. 2014. Global tsunami hazard and exposure due to large co-seismic slip. International Journal of Disaster Risk Reduction, 10(PB), 406–418. DOI: 10.1016/j.ijdrr.2014.04.003.

Mardiatno, D. 2013. A proposal for tsunami mitigation by using coastal vegetations: Some finding from southern coastal area of Central Java, Indonesia. Journal of Natural Resources and Development, 3(7), 85–95.

Mardiatno, D., Sunarto, Wf, L. R., Saptadi, G., & Ayuningtyas, E. A. 2015. Risk mapping and tsunami mitigation in Gunungkidul area, Yogyakarta. AIP Conference Proceedings, 1658 (May). DOI: 10.1063/1.4915043.

Mardiatno, D., Malawani, M. N., & Ma, R. 2020. International Journal of Disaster Risk Reduction The future tsunami risk potential as a consequence of building development in Pangandaran Region, West Java, Indonesia. International Journal of Disaster Risk Reduction, 46(January), 101523. DOI: 10.1016/j.ijdrr.2020.101523.

Microsoft. 2022. AI Assisted Mapping. Microsoft. Accessed on 20 March 2022. Retreived from https://www.microsoft.com/en-us/maps/building-footprints.

Microsoft. 2022. “Microsoft/IdMyPhBuildingFootprints”. Github. Accessed on 20 March 2022. Retreived from https://github.com/microsoft/IdMyPhBuildingFootprints.

Mohamadi, B., Chen, S., & Liu, J. 2019. Evacuation priority method in tsunami hazard based on DMSP/OLS population mapping in the Pearl River estuary, China. ISPRS International Journal of Geo-Information, 8(3), 1–15. DOI: 10.3390/ijgi8030137.

Mutanga, O., & Kumar, L. 2019. Google earth engine applications. Remote Sensing, 11(5), 11–14. DOI: 10.3390/rs11050591.

Nurulloh, U. I. 2019. Arahan Tata Guna Lahan Berdasarkan Pemodelan Bahaya Tsunami Dan Dinamika Penggunaan Lahan. Thesis, Indonesia: Universitas Gadjah Mada.

Paulik, R., Williams, S., Simi, T., Bosserelle, C., Chan Ting, J., & Simanu, L. 2021. Evaluating building exposure and economic loss changes after the 2009 South Pacific Tsunami. International Journal of Disaster Risk Reduction, 56 (February), 102131. https://doi.org/10.1016/j.ijdrr.2021.102131.

Ps, P., & Aithal, B. H. 2022. Building footprint extraction from very high-resolution satellite images using deep learning. Journal of Spatial Science, 00(00), 1–17. DOI: 10.1080/14498596.2022.2037473.

Robinson, C., Ortiz, A., Park, H., Gracia, N. L., Kaw, J. K., Sederholm, T., Dodhia, R., & Ferres, J. M. L. 2022. Fast building segmentation from satellite imagery and few local labels. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2022-June, 1462–1470. DOI: 10.1109/CVPRW56347.2022.00152.

Small, C., & Nicholls, R. J. 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19(3), 584–599. DOI: 10.2307/4299200.

Smart, G. M., Crowley, K. H. M., & Lane, E. M. 2016. Estimating tsunami run-up. Natural Hazards, 80(3), 1933–1947. DOI: 10.1007/s11069-015-2052-8.

Touzani, S., & Granderson, J. 2021. Open data and deep semantic segmentation for automated extraction of building footprints. Remote Sensing, 13(13). DOI: 10.3390/rs13132578.

Wahyuni, L. 2020 Analisis Risiko Bencana Tsunami Untuk Mendukung Tata Ruang Pesisir Di Kabupaten Kulonprogo. Dissertation, Indonesia: Universitas Gadjah Mada.

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D., & Putra, H. E. 2020. Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10(1), 1–11. DOI: 10.1038/s41598-020-72142-z.



DOI: https://doi.org/10.22146/teknosains.79526

Article Metrics

Abstract views : 871 | views : 600

Refbacks





Copyright (c) 2023 Andes Saragi, Djati Mardiatno, Dyah Rahmawati Hizbaron

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Copyright © 2024 Jurnal Teknosains     Submit an Article        Tracking Your Submission


Editorial Policies       Publishing System       Copyright Notice       Site Map       Journal History      Visitor Statistics     Abstracting & Indexing