Extraction Method and Solvent Effect on Antioxidant and Anti-lipase Activities of Nostoc sp. MRB-1 from the Peatlands in Oxbow Hanjalutung Lake, Indonesia

  • Noor Hidhayati Research Center for Applied Microbiology, Research Organization of Life Science and Environment, National Research and Innovation Agency, Bogor, Indonesia
  • Anastasia Wheni Indrianingsih Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Dwi Ni’maturrohmah Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Hani Susanti 2Research Center for Applied Microbiology, Research Organization of Life Science and Environment, National Research and Innovation Agency, Bogor, Indonesia
  • Sri Handayani Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Margi Hastuti Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Anjar Windarsih Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
  • Zahra Salsabila Undergraduate Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
  • Marlyn Laksitorini Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281
  • Cici Darsih National Research and Innovation Agency
Keywords: microalgae, antioxidant, anti-obesity, extraction method, Nostoc sp., solvent extraction

Abstract

The increasing utilization of microalgae as a natural resource of bioactive compounds encourages finding efficient and cost-effective ways to extract those compounds. Therefore, the present study aimed to evaluate two solvents and two extraction methods to obtain extracts of microalgae Nostos sp. MRB-1. The extracts were evaluated regarding phenolic content, antioxidant, and anti-lipase activities. The results showed that maceration using ethanol obtained the highest phenolic content (11.77±1.47 GAE mg/g dry extract) and anti-lipase activity with the value of 23.01±1.66% at 0.38 mg/mL. While the extract obtained from the ultrasound using hexane exhibited the highest antioxidant activity with a value of 39.68±0.07% at 0.8 mg/mL. These results demonstrate that maceration using ethanol is more effective for phenolic extraction from microalgae. In microalgae, phenolic content positively correlates with anti-lipase activity, but the opposite was verified, phenolic compounds are not contributors to the antioxidant activity of Nostoc sp. MR-1 extract

References

Al-Rifai, A., Aqel, A., Al-Warhi, T., Wabaidur, S. M., Al-Othman, Z. A., & Badjah-Hadj-Ahmed, A. Y. (2017). Antibacterial, Antioxidant Activity of Ethanolic Plant Extracts of Some Convolvulus Species and Their DART-ToF-MS Profiling. Evidence-Based Complementary and Alternative Medicine, 2017, 5694305. https://doi.org/10.1155/2017/5694305
Arif, M., Li, Y., El-Dalatony, M. M., Zhang, C., Li, X., & Salama, E. S. (2021). A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal. Renewable Energy, 163, 1973–1982. https://doi.org/10.1016/j.renene.2020.10.066
Assunção, M. F. G., Amaral, R., Martins, C. B., Ferreira, J. D., Ressurreição, S., Santos, S. D., Varejão, J. M. T. B., & Santos, L. M. A. (2017). Screening microalgae as potential sources of antioxidants. Journal of Applied Phycology, 29(2), 865–877. https://doi.org/10.1007/s10811-016-0980-7
Ayele, D. T., Akele, M. L., & Melese, A. T. (2022). Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chemistry, 16(1), 30. https://doi.org/10.1186/s13065-022-00822-0
Banskota, A. H., Sperker, S., Stefanova, R., McGinn, P. J., & O’Leary, S. J. B. (2019). Antioxidant properties and lipid composition of selected microalgae. Journal of Applied Phycology, 31(1), 309–318. https://doi.org/10.1007/s10811-018-1523-1
Banskota, A. H., Steevensz, A. J., Stefanova, R., Sperker, S., Melanson, R., Osborne, J. A., O’Leary, S. J. B., & Melanson, J. E. (2016). Pancreatic lipase inhibitory activity of monogalactosyldiacylglycerols isolated from the freshwater microalga Chlorella sorokiniana. Journal of Applied Phycology, 28(1), 169–175. https://doi.org/10.1007/s10811-015-0558-9
Choochote, W., Suklampoo, L., & Ochaikul, D. (2014). Evaluation of antioxidant capacities of green microalgae. Journal of Applied Phycology, 26(1), 43–48. https://doi.org/10.1007/s10811-013-0084-6
Chopra, A. S., Lordan, R., Horbańczuk, O. K., Atanasov, A. G., Chopra, I., Horbańczuk, J. O., Jóźwik, A., Huang, L., Pirgozliev, V., Banach, M., Battino, M., & Arkells, N. (2022). The current use and evolving landscape of nutraceuticals. Pharmacological Research, 175(11). https://doi.org/10.1016/j.phrs.2021.106001
Chowdury, K. H., Nahar, N., & Deb, U. K. (2020). The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review. Computational Water, Energy, and Environmental Engineering, 09(04), 185–215. https://doi.org/10.4236/cweee.2020.94012
Dalal, S. R., Hussein, M. H., El-Naggar, N. E.-A., Mostafa, S. I., & Shaaban-Dessuuki, S. A. (2021). Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Scientific Reports, 11(1), 16741. https://doi.org/10.1038/s41598-021-96202-0
Darvehei, P., Bahri, P. A., & Moheimani, N. R. (2018). Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, 97(3), 233–258. https://doi.org/10.1016/j.rser.2018.08.027
Eldalatony, M. M., Kabra, A. N., Hwang, J. H., Govindwar, S. P., Kim, K. H., Kim, H., & Jeon, B. H. (2016). Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess and Biosystems Engineering, 39(1), 95–103. https://doi.org/10.1007/s00449-015-1493-5
Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477–1486. https://doi.org/10.1007/s10811-012-9804-6
Gómez-Zorita, S., Trepiana, J., González-Arceo, M., Aguirre, L., Milton-Laskibar, I., González, M., Eseberri, I., Fernández-Quintela, A., & Portillo, M. P. (2019). Anti-obesity effects of microalgae. International Journal of Molecular Sciences, 21(1), 41. https://doi.org/10.3390/ijms21010041
Hidhayati, N., Agustini, N. W. S., & Widyagustina, D. (2020). Antimicrobial activity of ethanol fraction from cyanobacteria Chroococcus turgidus. IOP Conference Series: Earth and Environmental Science, 439(1). https://doi.org/10.1088/1755-1315/439/1/012046
Hossain, N., Zaini, J., Mahlia, T. M. I., & Azad, A. K. (2019). Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renewable Energy (131), 617–624. https://doi.org/10.1016/j.renene.2018.07.082
Hruby, A., Manson, J. A. E., Qi, L., Malik, V. S., Rimm, E. B., Sun, Q., Willett, W. C., & Hu, F. B. (2016). Determinants and consequences of obesity. American Journal of Public Health, 106(9), 1656–1662. https://doi.org/10.2105/AJPH.2016.303326
Josephine, A., Kumar, T. S., Surendran, B., Rajakumar, S., Kirubagaran, R., & Dharani, G. (2022). Evaluating the effect of various environmental factors on the growth of the marine microalgae, Chlorella vulgaris. Frontiers in Marine Science, 9(8), 1–5. https://doi.org/10.3389/fmars.2022.954622
Kim, J. H., Kim, S. M., Cha, K. H., Mok, I. K., Koo, S. Y., Pan, C. H., & Lee, J. K. (2016). Evaluation of the anti-obesity effect of the microalga Phaeodactylum tricornutum. Applied Biological Chemistry, 59(2), 283–290. https://doi.org/10.1007/s13765-016-0151-1
Ku, C. S., Kim, B., Pham, T. X., Yang, Y., Weller, C. L., Carr, T. P., Park, Y.-K., & Lee, J.-Y. (2015). Hypolipidemic Effect of a Blue-Green Alga (Nostoc commune) Is Attributed to Its Nonlipid Fraction by Decreasing Intestinal Cholesterol Absorption in C57BL/6J Mice. Journal of Medicinal Food, 18(11), 1214–1222. https://doi.org/10.1089/jmf.2014.0121
Laksitorini, M. D., Suryani, L. U., Muhammad, F. R., & Purnomo, H. (2023). Application of Hildebrand Solubility Parameter to Identify Ethanol-Free Co-Solvent for Pediatric Formulation. Indonesian Journal of Pharmacy, 34(2), 218–226. https://doi.org/10.22146/ijp.6627
Lin, X., & Li, H. (2021). Obesity: Epidemiology, Pathophysiology, and Therapeutics. Frontiers in Endocrinology, 12(9), 1–9. https://doi.org/10.3389/fendo.2021.706978
Liu, Y., Liu, X., Cui, Y., & Yuan, W. (2022). Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry, 87(6), 106054. https://doi.org/10.1016/j.ultsonch.2022.106054
Ma, Y. A., Cheng, Y. M., Huang, J. W., Jen, J. F., Huang, Y. S., & Yu, C. C. (2014). Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess and Biosystems Engineering, 37(8), 1543–1549. https://doi.org/10.1007/s00449-014-1126-4
Martinez-Gonzalez, A. I., Alvarez-Parrilla, E., Díaz-Sánchez, Á. G., de la Rosa, L. A., Núñez-Gastélum, J. A., Vazquez-Flores, A. A., & Gonzalez-Aguilar, G. A. (2017). In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, Fluorescence spectroscopy and molecular docking study. Food Technology and Biotechnology, 55(4), 519–530. https://doi.org/10.17113/ftb.55.04.17.5138
Martinez-Hervas, S., Fandos, M., Real, J. T., Espinosa, O., Chaves, F. J., Saez, G. T., Salvador, A., Cerdá, C., Carmena, R., & Ascaso, J. F. (2008). Insulin resistance and oxidative stress in families combined hyperlipidemia. Atherosclerosis, 199(2), 384–389. https://doi.org/10.1016/j.atherosclerosis.2007.11.023
Minhas, A. K., Hodgson, P., Barrow, C. J., & Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, 7(MAY), 1–19. https://doi.org/10.3389/fmicb.2016.00546
Miri, R., Saadati, H., Ardi, P., & Firuzi, O. (2012). Alterations in oxidative stress biomarkers associated with mild hyperlipidemia and smoking. Food and Chemical Toxicology, 50(3–4), 920–926. https://doi.org/10.1016/j.fct.2011.12.031
Monteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., Barros, A., Oliva-Teles, A., Enes, P., & Díaz-Rosales, P. (2020a). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32(1), 349–362. https://doi.org/10.1007/s10811-019-01927-1
Monteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., Barros, A., Oliva-Teles, A., Enes, P., & Díaz-Rosales, P. (2020b). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32, 349–362. https://doi.org/10.1007/s10811-019-01927-1
Paniagua-Michel, J. (2015). Chapter 16 - Microalgal Nutraceuticals (S.-K. B. T.-H. of M. M. Kim, Ed.; pp. 255–267). Academic Press. https://doi.org/10.1016/B978-0-12-800776-1.00016-9
Puri, V., Nagpal, M., Singh, I., Singh, M., Dhingra, G. A., Huanbutta, K., Dheer, D., Sharma, A., & Sangnim, T. (2022). A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients, 14(21). https://doi.org/10.3390/nu14214637
Šantek, B., Friehs, K., Lotz, M., Flaschel, E., Felski, M., Friehs, K., Lotz, M., Flaschel, E., Sano, C., Saioa, G., Trepiana, J., Gonz, M., Aguirre, L., Sag-c, E. E., Mi, E., Jilnalg, E., Sag-, E., Geumdong, E., Sag, E., … Kołodziejska-Sawerska, A. (2019). Anti-Obesity E ff ects of Microalgae. Engineering in Life Sciences, 90(1), 1–17. ISSN: 16180240
Ss, M., & St, G. (2021). Characterization of microalgal biomass through fourier transforms infrared (FT-IR) spectroscopy International Journal of Botany Studies Characterization of microalgal biomass through fourier transforms infrared (FT-IR) spectroscopy. International Journal of Botany Studies (21).
Sudhakar, K., & Premalatha, M. (2015). Characterization of micro algal biomass through FTIR/TGA/CHN analysis: application to Scenedesmus sp. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(21), 2330–2337.
Tsai, S.-C., Huang, Y.-W., Wu, C.-C., Wang, J.-J., Chen, Y.-T., Singhania, R. R., Chen, C.-W., Dong, C.-D., & Hsieh, S.-L. (2022). Anti-Obesity Effect of Nostoc commune Ethanol Extract In Vitro and In Vivo. Nutrients, 14(5). https://doi.org/10.3390/nu14050968
Valenzuela, P. L., Carrera-Bastos, P., Castillo-García, A., Lieberman, D. E., Santos-Lozano, A., & Lucia, A. (2023). Obesity and the risk of cardiometabolic diseases. Nature Reviews Cardiology, 20(7), 475–494. https://doi.org/10.1038/s41569-023-00847-5
Vieira, M. V., Turkiewicz, I. P., Tkacz, K., Fuentes-Grünewald, C., Pastrana, L. M., Fuciños, P., Wojdyło, A., & Nowicka, P. (2021). Microalgae as a potential functional ingredient: Evaluation of the phytochemical profile, antioxidant activity and in-vitro enzymatic inhibitory effect of different species. Molecules, 26(24). https://doi.org/10.3390/molecules26247593
Wiyono, T., Frediansyah, A., Sholikhah, E. N., & Pratiwi, W. R. (2022). UHPLC-ESI-MS analysis of Javanese Tamarindus indica leaves from various tropical zones and their beneficial properties in relation to antiobesity. Journal of Applied Pharmaceutical Science, 12(8), 137–147. https://doi.org/10.7324/JAPS.2022.120814
Yap, B. H. J., Crawford, S. A., Dumsday, G. J., Scales, P. J., & Martin, G. J. O. (2014). A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Research, 5(1), 112–120. https://doi.org/10.1016/j.algal.2014.07.001
Published
2024-11-28
How to Cite
Hidhayati, N., Wheni Indrianingsih, A., Ni’maturrohmah, D., Susanti, H., Handayani, S., Hastuti, M., Windarsih, A., Salsabila, Z., Laksitorini, M., & Darsih, C. (2024). Extraction Method and Solvent Effect on Antioxidant and Anti-lipase Activities of Nostoc sp. MRB-1 from the Peatlands in Oxbow Hanjalutung Lake, Indonesia. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.15492
Section
Research Article