Antiangiogenic activity of 4 – chloro phenyl carbothioamide derivatives ‎in ex vivo‏ ‏and in vitro experimental study

  • Zainab M Ali Department of Pharmacology, College of ‎Medicine, Al-Nahrain University, Baghdad, ‎Iraq
  • Proff Haitham ‎Mahmood ‎Kadhim‎ Department of Pharmacology and Toxicology, ‎College of Pharmacy, Al-Nahrain University, ‎Baghdad, Iraq
  • Dr Omeed M. ‎Hassan‎ Department of Pharmaceutical Chemistry, ‎College of Pharmacy, University of Kirkuk, ‎Kirkuk, ‎Iraq
  • Prof Ammar Kubba‎ Department of Pharmaceutical Chemistry, ‎College of Pharmacy, University of Baghdad, ‎‎Baghdad, Iraq‎
  • Ass Proff Hayder B Sahib Department of Pharmacology, College of ‎Pharmacy, Al-Nahrain University, Baghdad, ‎Iraq
Keywords: Anti-angiogenesis‎, VEGF gene‎, human ‎umbilical ventricular endothelial cell (HUVEC)‎, colon cancer ‎‎‎(HCT116)‎

Abstract

The present study sought to examine the potential antiangiogenic, antioxidant, and ‎cytotoxic properties of a carbothioamide indole derivative and assess VEGF gene expression.‎ The tested indole derivative's antiangiogenic efficacy was assessed using the ex-vivo rat ‎aorta ring (RAR) assay. The DPPH test for scavenging activity was utilized to clarify the most ‎likely cause of its antiangiogenic action. The MTT assay assessed the proliferation of the HUVEC ‎cell line while the expression of the VEGF gene in the colon cancer (HCT116) cell line was ‎analysed.‎ The evaluated drug exhibited antiangiogenic efficacy with an IC50 value of 17.99µg/ml in ‎the RAR assay. The drug successfully reduced the DPPH free radical in a concentration-dependent ‎manner (IC50 = 100.3 µg/ml). The evaluated drug exhibited negligible to non-toxic effects on the ‎HUVEC cell line, with an IC50 value of 733.6 μg/ml. It significantly downregulates the VEGF ‎gene expression in HCT116 cells at 400 µg/ml.‎ In conclusion, the 2-NHC compound exhibited significant antioxidant and anti-angiogenesis ‎effects with minimum toxicity against normal human cells. 2-NHC appears to downregulate the ‎VEGF gene expression in colon cancer cell lines.

References

Abo-Ashour, M. F., Eldehna, W. M., ‎George, R. F., Abdel-Aziz, M. M., ‎Elaasser, M. M., Gawad, N. M. A., ‎Gupta, A., Bhakta, S., & Abou-Seri, ‎S. M. (2018). Novel indole-‎thiazolidinone conjugates: Design, ‎synthesis and whole-cell phenotypic ‎evaluation as a novel class of ‎antimicrobial agents. European ‎Journal of Medicinal Chemistry, 160, ‎‎49-60. ‎
Adams, G. (2020). A beginner’s guide to ‎RT-PCR, qPCR and RT-qPCR. The ‎Biochemist, 42(3), 48-53. ‎https://doi.org/10.1042/bio20200034 ‎
Ai, L., Liu, L., Zheng, L., Liu, Y., Sun, B., ‎Su, G., Xu, J., Chen, Y., & Zhao, M. ‎‎(2024). An on-line stop-flow RPLC× ‎SEC-MS/DPPH radical scavenging ‎activity analysis system and its ‎application in separation and ‎identification of antioxidant ‎peptides. Food Chemistry, 436, ‎‎137670. ‎
Al-Rubaye, I. M., Razzak Mahmood, A. A., ‎Tahtamouni, L. H., AlSakhen, M. F., ‎Kanaan, S. I., Saleh, K. M., & Yasin, ‎S. R. (2024). In silico and in vitro ‎evaluation of novel carbothioamide-‎based and heterocyclic derivatives of ‎‎4-(tert-butyl)-3-methoxybenzoic acid ‎as EGFR tyrosine kinase allosteric ‎site inhibitors. Results in Chemistry, ‎‎7, 101329. ‎https://doi.org/https://doi.org/10.1016‎‎/j.rechem.2024.101329 ‎
Ali, Z. M., Kadhim, H. M., Hassan, O. M., ‎Kubba, A., Hussein, Z. A., & Sahib, ‎H. B. (2024). Antiangiogenic activity ‎of 5-bromoindole carbothioamide ‎derivative in ex vivo, in vivo, and in ‎vitro experimental study [Article]. ‎Pharmacia, 71, 1-9, Article e128589. ‎https://doi.org/10.3897/PHARMACIA.71.E128589 ‎
Allawi, M. M., Mahmood, A. A. R., ‎Tahtamouni, L. H., AlSakhen, M. F., ‎Kanaan, S. I., Saleh, K. M., & Yasin, ‎S. R. (2024). New Indole-6-‎Carboxylic Acid Derivatives as ‎Multi-Target Antiproliferative ‎Agents: Synthesis, in Silico Studies, ‎and Cytotoxicity Evaluation. Chem ‎Biodivers, 21(2), e202301892. ‎https://doi.org/10.1002/cbdv.202301‎‎892 ‎
Banerjee, N., Roy, L., Panda, S., ‎Roychowdhury, T., & Chatterjee, S. ‎‎(2024). In Silico designed cell-‎penetrating anti-cancer peptide ‎specifically inhibits VEGF-A ‎expression. BioRxiv, 2024.2002. ‎‎2008.579410. ‎
Brown, K. J., Maynes, S. F., Bezos, A., ‎Maguire, D. J., Ford, M. D., & ‎Parish, C. R. (1996). A novel in vitro ‎assay for human angiogenesis. Lab ‎Invest, 75(4), 539-555. ‎
Cerezo, A. B., Hornedo-Ortega, R., Álvarez-‎Fernández, M. A., Troncoso, A. M., ‎& García-Parrilla, M. C. (2017). ‎Inhibition of VEGF-induced ‎VEGFR-2 activation and HUVEC ‎migration by melatonin and other ‎bioactive indolic compounds. ‎Nutrients, 9(3), 249. ‎
Chadha, N., & Silakari, O. (2018). Chapter 8 ‎‎- Indoles: As Multitarget Directed ‎Ligands in Medicinal Chemistry. In ‎O. Silakari (Ed.), Key Heterocycle ‎Cores for Designing Multitargeting ‎Molecules (pp. 285-321). Elsevier. ‎https://doi.org/https://doi.org/10.1016‎‎/B978-0-08-102083-8.00008-X ‎
Cheng, J., Yang, H. L., Gu, C. J., Liu, Y. K., ‎Shao, J., Zhu, R., He, Y. Y., Zhu, X. ‎Y., & Li, M. Q. (2019). Melatonin ‎restricts the viability and ‎angiogenesis of vascular endothelial ‎cells by suppressing HIF-‎‎1α/ROS/VEGF. International journal ‎of molecular medicine, 43(2), 945-‎‎955. ‎
Chomczynski, P., & Sacchi, N. (1987). ‎Single-step method of RNA isolation ‎by acid guanidinium thiocyanate-‎phenol-chloroform extraction. Anal ‎Biochem, 162(1), 156-159. ‎https://doi.org/10.1006/abio.1987.999‎‎9 ‎
D'Alessio, A., Moccia, F., Li, J. H., Micera, ‎A., & Kyriakides, T. R. (2015). ‎Angiogenesis and Vasculogenesis in ‎Health and Disease. Biomed Res Int, ‎‎2015, 126582. ‎https://doi.org/10.1155/2015/126582 ‎
Das, B., Dash, S. R., Patel, H., Sinha, S., ‎Bhal, S., Paul, S., Das, C., Pradhan, ‎R., Ahmed, I., & Goutam, K. (2023). ‎Quinacrine inhibits HIF-1α/VEGF-A ‎mediated angiogenesis by disrupting ‎the interaction between cMET and ‎ABCG2 in patient-derived breast ‎cancer stem cells. Phytomedicine, ‎‎117, 154914. ‎
Dhuguru, J., & Skouta, R. (2020). Role of ‎Indole Scaffolds as Pharmacophores ‎in the Development of Anti-Lung ‎Cancer Agents. Molecules, 25(7). ‎https://doi.org/10.3390/molecules250‎‎71615 ‎
Dudley, A. C., & Griffioen, A. W. (2023). ‎Pathological angiogenesis: ‎mechanisms and therapeutic ‎strategies. Angiogenesis, 26(3), 313-‎‎347. ‎
El-Zahabi, M. A., Elkady, H., Sakr, H., ‎Abdelraheem, A. S., Eissa, S. I., & ‎El-Adl, K. (2023). Design, synthesis, ‎anticancer evaluation, in silico ‎docking and ADMET analysis of ‎novel indole-based thalidomide ‎analogs as promising ‎immunomodulatory agents. Journal ‎of Biomolecular Structure and ‎Dynamics, 41(24), 15106-15123. ‎
Fong, G. H. (2008). Mechanisms of adaptive ‎angiogenesis to tissue hypoxia. ‎Angiogenesis, 11(2), 121-140. ‎https://doi.org/10.1007/s10456-008-‎‎9107-3 ‎
Hassan, O. M., Kubba, A., & Tahtamouni, L. ‎H. (2023). Novel 5-bromoindole-2-‎carboxylic Acid Derivatives as ‎EGFR Inhibitors: Synthesis, Docking ‎Study, and Structure Activity ‎Relationship. Anticancer Agents Med ‎Chem, 23(11), 1336-1348. ‎https://doi.org/10.2174/18715206236‎‎66230227153449 ‎
Hassan, O. M., Kubba, A., & Tahtamouni, L. ‎H. (2023). Novel 5-bromoindole-2-‎carboxylic Acid Derivatives as ‎EGFR Inhibitors: Synthesis, Docking ‎Study, and Structure Activity ‎Relationship. Anti-Cancer Agents in ‎Medicinal Chemistry (Formerly ‎Current Medicinal Chemistry-Anti-‎Cancer Agents), 23(11), 1336-1348. ‎
Heriz, M. H., Mahmood, A. A. R., Yasin, S. ‎R., Saleh, K. M., AlSakhen, M. F., ‎Kanaan, S. I., Himsawi, N., Saleh, A. ‎M., & Tahtamouni, L. H. (2024). ‎Synthesis, docking study, and ‎antitumor evaluation of benzamides ‎and oxadiazole derivatives of 3-‎phenoxybenzoic acid as VEGFR-2 ‎inhibitors. Drug Dev Res, 85(3), ‎e22186. ‎https://doi.org/10.1002/ddr.22186 ‎
Hussein, Z. A., Al-Zubaidy, A. A., & Sahib, ‎H. B. (2018). The anti-angiogenic ‎activity of phoenix dactylifera seeds ‎methanol extract in vivo study ‎‎[Article]. Iranian Journal of ‎Pharmaceutical Sciences, 14(2), 83-‎‎92. ‎https://www.scopus.com/inward/record.uri?eid=2-s2.0-‎‎85061846214&partnerID=40&md5=‎‎3e17d81174f9cc54d6adc138b803e0‎‎5b ‎
Hussein, Z. A., Al-Zubaidy, A. A., & Sahib, ‎H. B. (2018). The Anti-Angiogenic ‎Activity of Phoenix Dactylifera ‎Seeds Methanol Extract in Vivo ‎Study: Phoenix dactylifera seeds ‎Methanol Extract in vivo study. ‎Iranian Journal of Pharmaceutical ‎Sciences, 14(2), 83-92. ‎https://doi.org/10.22037/ijps.v14.406‎‎65 ‎
Iacopetta, K., Collins-Praino, L. E., ‎Buisman-Pijlman, F. T., Liu, J., ‎Hutchinson, A. D., & Hutchinson, ‎M. R. (2020). Are the protective ‎benefits of vitamin D in ‎neurodegenerative disease dependent ‎on route of administration? A ‎systematic review. Nutritional ‎neuroscience, 23(4), 251-280. ‎
Jagadeesan, S., & Karpagam, S. (2023). ‎Novel series of N-acyl substituted ‎indole based piperazine, thiazole and ‎tetrazoles as potential antibacterial, ‎antifungal, antioxidant and cytotoxic ‎agents, and their docking ‎investigation as potential Mcl-1 ‎inhibitors. Journal of Molecular ‎Structure, 1271, 134013. ‎
Kadhim, H. M. (2016). Antiinflmmatory and ‎antihyperlipidemic effect of adjuvant ‎cinnamon in type 2 diabetic patients. ‎Int. J. Pharm. Sci. Rev. Res, 41(1), ‎‎88-98. ‎
Livak, K. J., & Schmittgen, T. D. (2001). ‎Analysis of relative gene expression ‎data using real-time quantitative PCR ‎and the 2(-Delta Delta C(T)) ‎Method. Methods, 25(4), 402-408. ‎https://doi.org/10.1006/meth.2001.12‎‎62 ‎
Manna, M. J., Abu-raghif, A., & Muhsin, H. ‎Y. (2019). The effect of Niclosamide ‎in acetic acid induce colitis: an ‎experimental study. Prensa méd. ‎argent, 105(5), 309-316. ‎
Mngwengwe, L., Lugongolo, M., Ombinda-‎Lemboumba, S., Ismail, Y., & ‎Mthunzi-Kufa, P. (2024). The effect ‎of low-level laser therapy on severe ‎acute respiratory syndrome ‎coronavirus-2 infected cells. ‎Mechanisms of Photobiomodulation ‎Therapy XVIII, ‎
Nicosia, R. F. (2009). The aortic ring model ‎of angiogenesis: a quarter century of ‎search and discovery. J Cell Mol ‎Med, 13(10), 4113-4136. ‎https://doi.org/10.1111/j.1582-‎‎4934.2009.00891.x ‎
Obaid, K. A., & Fawzi, H. A. (2024). ‎Evaluation of empagliflozin efficacy ‎as a promising anti-aging treatment in ‎mice: In-vivo study [Article]. ‎Pharmacia, 71, Article e116184. ‎https://doi.org/10.3897/pharmacia.71.‎e116184 ‎
Payne, S., Neal, A., & De Val, S. (2024). ‎Transcription factors regulating ‎vasculogenesis and angiogenesis. Dev ‎Dyn, 253(1), 28-58. ‎https://doi.org/10.1002/dvdy.575 ‎
Petrioli, R., Miano, S. T., & Martellucci, I. ‎‎(2022). Chapter 3 - Antiangiogenic ‎agents in the treatment of colorectal, ‎gastric, and gastroesophageal ‎junction adenocarcinoma. In L. ‎Morbidelli (Ed.), Antiangiogenic ‎Drugs as Chemosensitizers in Cancer ‎Therapy (Vol. 18, pp. 67-78). ‎Academic Press. ‎https://doi.org/https://doi.org/10.1016‎‎/B978-0-323-90190-1.00007-X ‎
Raghif, A. R. A. (2016). The Anti-‎Angiogenic Activity of P-Hydroxy ‎Chalcone. Int. J. Pharm. Sci. Rev. ‎Res., 37(1), 117-121. ‎
Saravanan, S., Vimalraj, S., Pavani, K., ‎Nikarika, R., & Sumantran, V. N. ‎‎(2020). Intussusceptive angiogenesis ‎as a key therapeutic target for cancer ‎therapy. Life Sci, 252, 117670. ‎
Tokala, R., Sana, S., Lakshmi, U. J., ‎Sankarana, P., Sigalapalli, D. K., ‎Gadewal, N., Kode, J., & ‎Shankaraiah, N. (2020). Design and ‎synthesis of thiadiazolo-carboxamide ‎bridged β-carboline-indole hybrids: ‎DNA intercalative topo-IIα inhibition ‎with promising antiproliferative ‎activity. Bioorganic Chemistry, 105, ‎‎104357. ‎https://doi.org/https://doi.org/10.1016‎‎/j.bioorg.2020.104357 ‎
Underwood, W., & Anthony, R. (2020). ‎AVMA guidelines for the euthanasia ‎of animals: 2020 edition. 2020-2021. ‎
Unterleuthner, D., Neuhold, P., Schwarz, K., ‎Janker, L., Neuditschko, B., Nivarthi, ‎H., Crncec, I., Kramer, N., Unger, ‎C., Hengstschläger, M., Eferl, R., ‎Moriggl, R., Sommergruber, W., ‎Gerner, C., & Dolznig, H. (2020). ‎Cancer-associated fibroblast-derived ‎WNT2 increases tumor angiogenesis ‎in colon cancer. Angiogenesis, 23(2), ‎‎159-177. ‎https://doi.org/10.1007/s10456-019-‎‎09688-8 ‎
Yao, Y., Huang, T., Wang, Y., Wang, L., ‎Feng, S., Cheng, W., Yang, L., & ‎Duan, Y. (2022). Angiogenesis and ‎anti-leukaemia activity of novel ‎indole derivatives as potent ‎colchicine binding site inhibitors. ‎Journal of Enzyme Inhibition and ‎Medicinal Chemistry, 37(1), 652-665. ‎https://doi.org/10.1080/14756366.20‎‎22.2032688 ‎
Yaseen, Y., Kubba, A., Shihab, W., & ‎Tahtamouni, L. (2022). Synthesis, ‎docking study, and structure-activity ‎relationship of novel niflumic acid ‎derivatives acting as anticancer ‎agents by inhibiting VEGFR or ‎EGFR tyrosine kinase activities. ‎Pharmacia, 69. ‎https://doi.org/10.3897/pharmacia.69.‎e86504‎
Published
2025-09-08
How to Cite
Ali, Z. M., Kadhim‎H. ‎., Hassan‎O. M., Kubba‎A., & Sahib, H. B. (2025). Antiangiogenic activity of 4 – chloro phenyl carbothioamide derivatives ‎in ex vivo‏ ‏and in vitro experimental study. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.16909
Section
Research Article