Mechanistic insights into the modulation of lipopolysaccharide-stimulated inflammatory and oxidative stress responses by Myrmecodia platytyrea tuber ethyl acetate extract in RAW 264.7 macrophages
Immunomodulatory mechanism of M. platytyrea
Abstract
Southeast Asians frequently utilise Myrmecodia platytyrea (Rubiaceae) to treat inflammatory diseases, but little is known about the molecular mechanism of this herbal plant. We evaluated the effect of M. platytyrea tuber ethyl acetate extract (EAMPT) on lipopolysaccharide (LPS)-induced inflammation and oxidative stress in RAW 264.7 cells. The total phenolic content of EAMPT were determined using the high-performance thin-layer chromatography (HPTLC). In vitro, the RAW 264.7 cells were divided into four groups: control (untreated), LPS (1 µg/mL LPS), treatment (3.75 to 60 µg/mL EAMPT plus LPS) and reference (200 µM ibuprofen plus LPS). Subsequently, cell culture samples were tested for cell viability, oxidative stress and inflammatory markers using the MTT assay, biochemical assays, ELISA, real-time qPCR and Western blot. EAMPT, with a total phenolic content of 4.15%, suppressed LPS-induced inflammation by lowering gene and protein expression of the iNOS/NO pathway and TNF-α. Furthermore, ROS levels were reduced while the HO-1 gene and protein expression increased, implying the antioxidant effect of EAMPT. The ROS-inhibitory effect was shown to be strongly correlated with its NO-inhibitory effect. EAMPT increased IL-6 gene and protein expression while no effect on the COX-2/PGE2 pathway was observed. In summary, EAMPT offers synergistic effects through dual mechanisms in an in vitro inflammation model, highlighting iNOS and HO-1 as therapeutic targets. Further research on M. platytyrea tuber's pharmacological and phytochemical characteristics may reveal its novel therapeutic potential.
References
Aro, A. O., Dzoyem, J. P., Goddard, A., Fonteh, P., Kayoka-Kabongo, P. N., & McGaw, L. J. (2019). In vitro Antimycobacterial, Apoptosis-Inducing Potential, and Immunomodulatory Activity of Some Rubiaceae Species. Frontiers in Pharmacology, 10, 00185. https://doi.org/10.3389/fphar.2019.00185
Ashino, T., Yamanaka, R., Yamamoto, M., Shimokawa, H., Sekikawa, K., Iwakura, Y., Shioda, S., Numazawa, S., & Yoshida, T. (2008). Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Molecular Immunology, 45(7), 2106-2115. https://doi.org/10.1016/j.molimm.2007.10.011
Atri, C., Guerfali, F. Z., & Laouini, D. (2018). Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. International Journal of Molecular Sciences, 19(6), 1801. https://doi.org/10.3390/ijms19061801
Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F., Stefani, M., Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F., & Stefani, M. (2021). Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants, 10(7), 1044. https://doi.org/10.3390/antiox10071044
Dirgantara, S., Insanu, M., & Fidrianny, I. (2022). Medicinal Properties of Ant Nest Plant (Myrmecodia Genus): A Comprehensive Review. Open Access Macedonian Journal of Medical Sciences, 10(F), 97-103. https://doi.org/10.3889/oamjms.2022.8481
Engida, A. M., Faika, S., Nguyen-Thi, B. T., & Ju, Y.-H. (2015). Analysis of major antioxidants from extracts of Myrmecodia pendans by UV/visible spectrophotometer, liquid chromatography/tandem mass spectrometry, and high-performance liquid chromatography/UV techniques. Journal of Food and Drug Analysis, 23(2). https://doi.org/10.1016/j.jfda.2014.07.005
Facchin, B. M., dos Reis, G. O., Vieira, G. N., Mohr, E. T. B., da Rosa, J. S., Kretzer, I. F., Demarchi, I. G., & Dalmarco, E. M. (2022). Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis. Inflammation Research, 71(7), 741-758. https://doi.org/10.1007/s00011-022-01584-0
Ghafari, A. T., Jahidin, A. H., Zakaria, Y., & Hasan, M. H. (2021). Phytochemical Screening and High-performance Thin-layer Chromatography Quantification of Vitex trifolia Leaves Hydro-alcoholic Extract: Potential Anti-inflammatory Properties. Journal of Pharmaceutical Research International, 33(28(A)), 111-121. https://doi.org/10.9734/jpri/2021/v33i28A31515
Hirano, T. (2021). IL-6 in inflammation, autoimmunity and cancer. International Immunology, 33(3). https://doi.org/10.1093/intimm/dxaa078
Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Medicine and Cellular Longevity, 2016, 7432797. https://doi.org/10.1155/2016/7432797
Jaafar, A., Jahidin, A. H., Hatta, F. H. M., Nasir, N. A. A., & Hasan, M. H. (2024). Phytochemistry, Cytoprotective and Anti-Inflammatory Effects of Myrmecodia platytyrea Ethyl Acetate Extract on Lipopolysaccharide-induced RAW 264.7 Cells. Science Letters, 18(4), 50-89. https://doi.org/https://doi.org/10.24191/sl.v18i4.28007
Jaafar, A., Zulkipli, M. A., Hatta, F. H. M., Jahidin, A. H., Nasir, N. A. A., & Hasan, M. H. (2023). Therapeutic potentials of iridoids derived from Rubiaceae against in vitro and in vivo inflammation: A scoping review. Saudi Pharmaceutical Journal, 32(1), 101876. https://doi.org/10.1016/j.jsps.2023.101876
Jantan, I., Ahmad, W., & Bukhari, S. N. A. (2015). Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Frontiers in Plant Science, 6, 655. https://doi.org/10.3389/fpls.2015.00655
Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J.-P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954-3962. https://doi.org/10.1021/jf990146l
Khumalo, G. P., Loa-Kum-Cheung, W., Van Wyk, B.-E., Feng, Y., & Cock, I. E. (2024). Leaf extracts of eight selected southern African medicinal plants modulate pro-inflammatory cytokine secretion in LPS-stimulated RAW 264.7 macrophages. Inflammopharmacology, 32(2). https://doi.org/10.1007/s10787-023-01420-9
Lee, Y. S., & Olefsky, J. (2021). Chronic tissue inflammation and metabolic disease. Genes & Development, 35(5-6), 307-328. https://doi.org/10.1101/gad.346312.120
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
Maeda, K., Yoshida, K., Nishizawa, T., Otani, K., Yamashita, Y., Okabe, H., Hadano, Y., Kayama, T., Kurosaka, D., & Saito, M. (2022). Inflammation and Bone Metabolism in Rheumatoid Arthritis: Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. International Journal of Molecular Sciences, 23(5), 2871. https://doi.org/10.3390/ijms23052871
Massironi, S., Viganò, C., Palermo, A., Pirola, L., Mulinacci, G., Allocca, M., Peyrin-Biroulet, L., & Danese, S. (2023). Inflammation and malnutrition in inflammatory bowel disease. The Lancet Gastroenterology & Hepatology, 8(6), 579-590. https://doi.org/10.1016/S2468-1253(23)00011-0
McEvoy, L., Carr, D. F., & Pirmohamed, M. (2021). Pharmacogenomics of NSAID-Induced Upper Gastrointestinal Toxicity. Frontiers in Pharmacology, 12, 684162. https://doi.org/10.3389/fphar.2021.684162
Memarzia, A., Khazdair, M. R., Behrouz, S., Gholamnezhad, Z., Jafarnezhad, M., Saadat, S., & Boskabady, M. H. (2021). Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. BioFactors, 47(3), 311-350. https://doi.org/10.1002/biof.1716
Merecz-Sadowska, A., Sitarek, P., Śliwiński, T., & Zajdel, R. (2020). Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. International Journal of Molecular Sciences, 21(24). https://doi.org/10.3390/ijms21249605
Mohamad Haris, N. F., Hazizul Hasan, M., Abdul Wahab, I., Ponto, T., & Adam, A. (2013). The antioxidant activity of myrmecodia platytyrea. The Open Conference Proceedings Journal, 4, 144. https://doi.org/10.2174/2210289201304010144
Mohamad Haris, N. F., Nik Hasan, M. K., Abdul Wahab, I., Hazizul Hasan, M., Ponto, T., & Adam, A. (2016). Compounds from the Antioxidant Active Fraction of M. Platytyrea. Jurnal Sains Kesihatan Malaysia, 14(1), 23-29. https://doi.org/10.17576/jskm-2016-1401-05
Mohd Zin, M., Abdul Wahab, I., Mahamood, M., Jahidin, A. H., Ponto, T., & Hazizul Hasan, M. (2024). Toxicological Insights into Myrmecodia platytyrea Tuber Aqueous Extract: An Oral Acute and Subacute Toxicity Studies in Mice. International Journal of Pharmaceuticals, Nutraceuticals and Cosmetic Science, 7(2), 21-33. https://doi.org/10.24191/IJPNaCS.v7i2.03
Nguyen, T. Q. C., Binh, T. D., Pham, T. L. A., Nguyen, Y. D. H., Trang, D. T. X., Nguyen, T. T., Kanaori, K., Kamei, K., Nguyen, T. Q. C., Duy Binh, T., Pham, T. L. A., Nguyen, Y. D. H., Thi Xuan Trang, D., Nguyen, T. T., Kanaori, K., & Kamei, K. (2020). Anti-Inflammatory Effects of Lasia spinosa Leaf Extract in Lipopolysaccharide-Induced RAW 264.7 Macrophages. International Journal of Molecular Sciences 2020, Vol. 21, Page 3439, 21(10). https://doi.org/10.3390/ijms21103439
Pasaribu, Y. P., Buyang, Y., Rettob, A. L., Latuheru, R., & Marlissa, I. (2018). Phytochemical screening of ant plant Myrmecodia rumphii Becc. Atlantis Highlights in Engineering, 1, 285-288.
Piotrowski, I., Kulcenty, K., & Suchorska, W. (2020). Interplay between inflammation and cancer. Reports of Practical Oncology and Radiotherapy, 25(3), 422-427. https://doi.org/10.1016/j.rpor.2020.04.004
Priyadarsini, K. I. (2014). The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, Vol. 19, Pages 20091-20112, 19(12). https://doi.org/10.3390/molecules191220091
Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., & Minor, L. (2013). Cell Viability Assays. In S. Markossian, K. Brimacombe, M. Arkin, D. Auld, C. Austin, J. Baell, T. D. Y. Chung, N. P. Coussens, J. L. Dahlin, V. Devanarayan, T. L. Foley, M. Glicksman, K. Gorshkov, J. V. Haas, M. D. Hall, S. Hoare, J. Inglese, P. W. Iversen, S. C. Kales, M. Lal-Nag, Z. Li, J. McGee, O. McManus, T. Riss, P. Saradjian, G. S. Sittampalam, M. Tarselli, J. O. Joseph Trask, Y. Wang, J. R. Weidner, M. J. Wildey, K. Wilson, M. Xia, & X. Xu (Eds.), Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Studies. https://www.ncbi.nlm.nih.gov/books/NBK144065/
Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Frontiers in Pharmacology, 13, 806470. https://doi.org/10.3389/fphar.2022.806470
Sai Priya, T., Ramalingam, V., & Suresh Babu, K. (2024). Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology, 32(5), 2821–2859. https://doi.org/10.1007/s10787-024-01562-4
Sardu, C., Paolisso, G., & Marfella, R. (2020). Inflammatory Related Cardiovascular Diseases: From Molecular Mechanisms to Therapeutic Targets. Current Pharmaceutical Design, 26(22), 2565-2573. https://doi.org/10.2174/1381612826666200213123029
Sharifi-Rad, J., Rayess, Y. E., Rizk, A. A., Sadaka, C., Zgheib, R., Zam, W., Sestito, S., Rapposelli, S., Neffe-Skocińska, K., Zielińska, D., Salehi, B., Setzer, W. N., Dosoky, N. S., Taheri, Y., Beyrouthy, M. E., Martorell, M., Ostrander, E. A., Suleria, H. A. R., Cho, W. C., . . . Martins, N. (2020). Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Frontiers in Pharmacology, 11, 01021. https://doi.org/10.3389/fphar.2020.01021
Simpson, D. S. A., & Oliver, P. L. (2020). ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants, 9(8), 743. https://doi.org/10.3390/antiox9080743
Stanojević, L., Stanković, M., Nikolić, V., Nikolić, L., Ristić, D., Čanadanovic-Brunet, J., & Tumbas, V. (2009). Antioxidant Activity and Total Phenolic and Flavonoid Contents of Hieracium pilosella L. Extracts. Sensors, 9(7), 5702–5714. https://doi.org/10.3390/s90705702
Sun, W., Shahrajabian, M. H., Sun, W., & Shahrajabian, M. H. (2023). Therapeutic Potential of Phenolic Compounds in Medicinal Plants—Natural Health Products for Human Health. Molecules, 28(4), 1845. https://doi.org/10.3390/molecules28041845
Suriyaprom, S., Srisai, P., Intachaisri, V., Kaewkod, T., Pekkoh, J., Desvaux, M., Tragoolpua, Y., Suriyaprom, S., Srisai, P., Intachaisri, V., Kaewkod, T., Pekkoh, J., Desvaux, M., & Tragoolpua, Y. (2023). Antioxidant and Anti-Inflammatory Activity on LPS-Stimulated RAW 264.7 Macrophage Cells of White Mulberry (Morus alba L.) Leaf Extracts. Molecules 2023, Vol. 28, Page 4395, 28(11). https://doi.org/10.3390/molecules28114395
Tharakan, A., Shukla, H., Benny, I. R., Tharakan, M., George, L., & Koshy, S. (2021). Immunomodulatory Effect of Withania somnifera (Ashwagandha) Extract—A Randomized, Double-Blind, Placebo Controlled Trial with an Open Label Extension on Healthy Participants. Journal of Clinical Medicine, 10(16), 3644. https://doi.org/10.3390/jcm10163644
Wu, D., Jin, Y., Xing, Y., Abate, M. D., Abbasian, M., Abbasi-Kangevari, M., Abbasi-Kangevari, Z., Abd-Allah, F., Abdelmasseh, M., Abdollahifar, M.-A., Abdulah, D. M., Abedi, A., Abedi, V., Abidi, H., Aboagye, R. G., Abolhassani, H., Abuabara, K., Abyadeh, M., Addo, I. Y., . . . Tam, L.-s. (2023). Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019. eClinicalMedicine, 64, 102193. https://doi.org/10.1016/j.eclinm.2023.102193


