Genotyping F1534C mutation on dried Aedes aegypti preparation through direct PCR method: a proof of concept
Abstract
Aedes aegypti (Ae. aegypti) is the primary vector of dengue hemorrhagic fever (DHF). Various control strategies have been utilized to control its population, including the use of pyrethroid-based insecticides. However, the presence of mutations, such as the F1534C mutation, that confers resistance to pyrethroids has been increasingly reported. The increase of resistance-conferring mutation in Ae. aegypti population could potentially hinder DHF control measures. As such, monitoring the genotype of Ae. aegypti population is crucial. Mosquito rearing, DNA extraction, and PCR examination are usually employed to monitor the circulation of F1534C mutations. To simplify this process, we proposed a direct PCR workflow utilizing dried mosquito samples preserved on an in-house filter paper. To demonstrate the utility of our proposed workflow, we performed direct allele-specific PCR (AS-PCR) on 46 dried adult Ae. aegypti. As a comparator, conventional PCR was performed on 8 DNA extract from Ae. aegypti. Our results showed that direct AS-PCR successfully identified both wild-type (F allele) and mutant (C allele) genotypes from dried mosquitos with a success rate of 93.48%. These findings provide preliminary evidence supporting the use of cellulose-based in-house filter paper for genotyping insecticide-resistant mosquitoes. However, field testing must be performed before its implementation in real-world epidemiological and surveillance applications.
References
World Health Organization. Dengue - global situation [Internet]. Disease Outbreak News. 2024 [cited 2024 Nov 28]. https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON518
Wilke ABB, Vasquez C, Carvajal A, Medina J, Chase C, Cardenas G, et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci Rep, 2020;10(1):12925. https://doi.org/10.1038/s41598-020-69759-5
Coalson JE, Richard DM, Hayden MH, Townsend J, Damian D, Smith K, et al. Aedes aegypti abundance in urban neighborhoods of Maricopa County, Arizona, is linked to increasing socioeconomic status and tree cover. Parasit Vectors, 2023;16(1):351. https://doi.org/10.1186/s13071-023-05966-z
Permata Kusuma A, Martini, Setiani O. Penggunaan insektisida rumah tangga golongan piretroid di kota magelang. Care: J Ilm Ilmu Kes. 2021;9(1):88–96.
Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol, 2012;86(2):165–81. https://doi.org/10.1007/s00204-011-0726-x
Field LM, Emyr Davies TG, O’Reilly AO, Williamson MS, Wallace BA. Voltage-gated sodium channels as targets for pyrethroid insecticides. Eur Biophys J [Internet]. 2017;46(7):675–9. https://doi.org/10.1007/s00249-016-1195-1
Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis, 2014;8(6):e2948-. https://doi.org/10.1371/journal.pntd.0002948
Hamid PH, Prastowo J, Ghiffari A, Taubert A, Hermosilla C. Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia. PLoS One, 2017;12(12):e0189680-. https://doi.org/10.1371/journal.pone.0189680
Hamid PH, Prastowo J, Widyasari A, Taubert A, Hermosilla C. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasit Vectors, 2017;10(1):283. https://doi.org/10.1186/s13071-017-2215-4
Satoto TBT, Satrisno H, Lazuardi L, Diptyanusa A, Purwaningsih, Rumbiwati, et al. Insecticide resistance in Aedes aegypti: an impact from human urbanization? PLoS One, 2019;14(6):e0218079. https://doi.org/10.1371/journal.pone.0218079
Amelia-Yap ZH, Sofian-Azirun M, Chen CD, Lau KW, Suana IW, Harmonis, et al. V1016G point mutation: the key mutation in the voltage-gated sodium channel (VGSC) gene of pyrethroid-resistant Aedes aegypti (Diptera: Culicidae) in Indonesia. J Med Entomol, 2019;56(4):953–8.
Mulyaningsih B, Umniyati SR, Satoto TBT, Diptyanusa A, Nugrahaningsih DAA, Selian Y. Insecticide resistance and mechanisms of Aedes aegypti (Diptera: Culicidae) in Yogyakarta. J Med Sci (Berkala Ilmu Kedokteran), 2018;50(01):24–32.
Fan Y, O’Grady P, Yoshimizu M, Ponlawat A, Kaufman PE, Scott JG. Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti. PLoS Negl Trop Dis, 2020;14(4):e0008154-.
https://doi.org/10.1371/journal.pntd.0008154
Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases. Pestic Biochem Physiol, 2016;133:1–12.
https://www.sciencedirect.com/science/article/pii/S0048357516300220
Fan Y, Scott JG. The F1534C voltage-sensitive sodium channel mutation confers 7- to 16-fold resistance to pyrethroid insecticides in. Pest Manag Sci [Internet]. 2020 Jun 1;76(6):2251–9. https://doi.org/10.1002/ps.5763
Wuliandari JR, Hoffmann AA, Tantowijoyo W, Endersby-Harshman NM. Frequency of kdr mutations in the voltage-sensitive sodium channel (VSSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasit Vectors, 2020;13(1):429. https://doi.org/10.1186/s13071-020-04304-x
Yuan H, Shan W, Zhang Y, Yan H, Li Y, Zhou Q, et al. High frequency of Voltage-gated sodium channel (VGSC) gene mutations in Aedes albopictus (Diptera: Culicidae) suggest rapid insecticide resistance evolution in Shanghai, China. PLoS Negl Trop Dis, 2023;17(6):e0011399-. https://doi.org/10.1371/journal.pntd.0011399
Schwarze K, Buchanan J, Fermont JM, Dreau H, Tilley MW, Taylor JM, et al. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med, 2020;22(1):85–94. https://doi.org/10.1038/s41436-019-0618-7
Stenhouse SA, Plernsub S, Yanola J, Lumjuan N, Dantrakool A, Choochote W, et al. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasit Vectors, 2013;6(1).
Holzschuh A, Koepfli C. Tenfold difference in DNA recovery rate: systematic comparison of whole blood vs. dried blood spot sample collection for malaria molecular surveillance. Malaria J, 2022;21(1):88. https://doi.org/10.1186/s12936-022-04122-9
Wijaya YOS, Niba ETE, Yabushita R, Bouike Y, Nishio H, Awano H. Glycogen storage disease type Ia screening using dried blood spots on filter paper: application of COP-PCR for detection of the c.648G>T G6PC gene mutation. Kobe J Med Sci, 2021;67(2):71–8. http://www.hgmd.cf.ac.uk].
Wijaya YOS, Purevsuren J, Harahap NIF, Eko Niba ET, Bouike Y, Nurputra DK, et al. Assessment of spinal muscular atrophy carrier status by determining SMN1 copy number using dried blood spots. Int J Neonatal Screen, 2020;6(2):43. https://doi.org/10.3390/ijns6020043.
Wijaya YOS, Ar Rochmah M, Nurputra DK, Farmawati A. Performance of cellulose-based card for direct genetic testing of spinal muscular atrophy. BMC Biotechnol, 2025;25(1):17. https://doi.org/10.1186/s12896-024-00938-2
Pichler V, Mancini E, Micocci M, Calzetta M, Arnoldi D, Rizzoli A, et al. A novel allele specific polymerase chain reaction (As-pcr) assay to detect the v1016g knockdown resistance mutation confirms its widespread presence in Aedes albopictus populations from Italy. Insects, 2021;12(1):79.
https://doi.org/10.3390/insects12010079. PMID: 33477382; PMCID: PMC7830166.
Martin B, Linacre A. Direct PCR: A review of use and limitations. Sci Just, 2020;60(4):303–10.
https://www.sciencedirect.com/science/article/pii/S1355030619302862
Lalli MA, Langmade JS, Chen X, Fronick CC, Sawyer CS, Burcea LC, et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. Clin Chem, 2021;67(2):415–24. https://doi.org/10.1093/clinchem/hvaa267
Swaran YC, Welch L. A comparison between direct PCR and extraction to generate DNA profiles from samples retrieved from various substrates. Forensic Sci Int Genet, 2012;6(3):407–12.
https://www.sciencedirect.com/science/article/pii/S1872497311001803
Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis; 2004;4(6):337–48. https://doi.org/10.1016/S1473-3099(04)01044-8
Sáenz JS, Roldan F, Junca H, Arbeli Z. Effect of the extraction and purification of soil DNA and pooling of PCR amplification products on the description of bacterial and archaeal communities. J Appl Microbiol; 2019;126(5):1454–67. https://doi.org/10.1111/jam.14231
Gupta N. DNA Extraction and polymerase chain reaction. J Cytol, 2019;36(2). https://journals.lww.com/jocy/fulltext/2019/36020/dna_extraction_and_polymerase_chain_reaction.9.aspx
Zrimec J, Kopinč R, Rijavec T, Zrimec T, Lapanje A. Band smearing of PCR amplified bacterial 16S rRNA genes: dependence on initial PCR target diversity. J Microbiol Methods, 2013;95(2):186–94.
https://www.sciencedirect.com/science/article/pii/S0167701213002467
Cavanaugh SE, Bathrick AS. Direct PCR amplification of forensic touch and other challenging DNA samples: a review. Forensic Sci Int Genet, 2018;32:40–9. https://www.sciencedirect.com/science/article/pii/S1872497317302119
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2013;97(24):10243–54. https://doi.org/10.1007/s00253-013-5290-2
Tao ZY, Zhang PY, Zhang L, Li CC, Hu R, Zhu HW, et al. The Comparison of PCR Kits for the Detection of Erythrocytic Parasites on Filter Paper. J Trop Med [Internet]. 2022 Jan 1;2022(1):5715436. https://doi.org/10.1155/2022/5715436
Chen L, Zhou K, Shi J, Zheng Y, Zhao X, Du Q, et al. Pyrethroid resistance status and co-occurrence of V1016G, F1534C and S989P mutations in the Aedes aegypti population from two dengue outbreak counties along the China-Myanmar border. Parasit Vectors, 2024;17(1):91. https://doi.org/10.1186/s13071-024-06124-9
Kushwah RBS, Kaur T, Dykes CL, Ravi Kumar H, Kapoor N, Singh OP. A new knockdown resistance (kdr) mutation, F1534L, in the voltage-gated sodium channel of Aedes aegypti, co-occurring with F1534C, S989P and V1016G. Parasit Vectors, 2020;13(1):327. https://doi.org/10.1186/s13071-020-04201-3