Effect of Hibiscus sabdariffa Linn. on the development of atherosclerosis in diabetes mellitus: a rapid review
Abstract
Atherosclerosis is closely linked to disturbances in lipid metabolism and chronic inflammation. In diabetes mellitus (DM), hyperglycemia exacerbates atherosclerosis by inducing structural changes in blood vessel endothelium through chronic inflammation triggered by oxidized low-density lipoprotein (OxLDL) formation. Inflammation plays a major role in atherosclerosis pathogenesis, with OxLDL, nuclear factor kappa B (NFkB), intercellular adhesion molecule-1 s(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) being crucial players in this process. Hibiscus (Hibiscus sabdariffa Linn.) a medicinal plant rich in polyphenols, is believed to have a role to prevent atherosclerosis development through its antioxidant activity, inhibiting vascular smooth muscle cell (VSMC) proliferation, and modulating inflammation pathways. This review explores the potential of hibiscus to prevent atherosclerosis development in DM, focusing on its phytochemical compounds and their impact on oxidative stress, hyperlipidemia, and inflammation pathways. The review highlights the importance of targeting VSMC proliferation, migration, and inflammatory responses mediated by ICAM-1 and VCAM-1 to attenuate atherosclerosis progression. Hibiscus shows promise as a natural treatment for atherosclerosis, but further research is still needed to fully understand its mechanisms and therapeutic potential.
References
https://doi.org/10.1039/c6fo00795c
2. Alfred ADD, Djagouri K, Jean-Claude BO. Determination of Natural Radioactivity of the Hibiscus Sabdariffa Linn (Roselle) Used in Cote d’Ivoire (Ivory Coast). Advances in Materials Physics and Chemistry 2021; 11(3):59-66.
https://doi.org/10.4236/ampc.2021.113006
3. Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatsara N, Sato H, Herunsalee A, et al. Antioxidant effects of aqueous extracts from dried calyx of hibiscus sabdariffa LINN. (Roselle) in vitro using rat low-density lipoprotein (LDL). Biol Pharm Bull 2005; 28(3):481-4.
https://doi.org/10.1248/bpb.28.481
4. Fithrotunnisa Q, Arsianti A, Kurniawan G, Qorina F, Tejaputri NA, Azizah NN. In Vitro Cytotoxicity of Hibiscus Sabdariffa Linn Extracts on A549 Lung Cancer Cell Line. Pharmacogn J 2020; 12(1):14-9.
https://doi.org/10.5530/pj.2020.12.3
5. Bedi PS, Bekele M, Gure G. Phyto-Chemistry and Pharmacological Activities of Hibiscus Sabdariffa Linn.-a Review. International Research Journal of Pure and Applied Chemistry 2020; 21(23):41-54.
https://doi.org/10.9734/irjpac/2020/v21i2330301
6. Shaha MDA, Biswas KK, Shaha RK. Alcoholic Green Fruits Extract of Abroma Augustam Linn. (Ulatkambal) Used for the Treatment of Diabetes. JECET 2021; 10(4):542-52.
https://doi.org/10.24214/jecet.a.10.4.54252
7. Bhupathie D, Kumar MS, Rengasamy KRR. A comprehensive network pharmacology study of nelumbinis semen (Lotus Seeds) phytochemicals for atherosclerosis and Type 2 Diabetes Mellitus. Natural Resources for Human Health 2023; 3(4):469-76.
https://doi.org/10.53365/nrfhh/175559
8. Bhat M, Kothiwale SK, Tirmale AR, Bhargava SY, Joshi BN. Antidiabetic Properties of Azardiracta Indica and Bougainvillea Spectabilis: In Vivo Studies in Murine Diabetes Model. Evid Based Complement Altern Med 2011; 2011:561625.
https://doi.org/10.1093/ecam/nep033
9. Chen CC, Hsu JD, Wang SF, Chiang HC, Yang MY, Kao ES, et al. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. J Agric Food Chem 2003; 51(18):5472-7.
https://doi.org/10.1021/jf030065w
10. Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH. Hibiscus sabdariffa leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food Chem 2013; 141(1):397-406.
https://doi.org/10.1016/j.foodchem.2013.03.026
11. Micucci M, Malaguti M, Toschi TG, Di Lecce G, Aldini R, Angeletti A, et al. Cardiac and Vascular Synergic Protective Effect Of Olea Europea L. Leaves And Hibiscus Sabdariffa L. Flower Extracts. Oxid Med Cell Longev 2015; 2015:318125.
https://doi.org/10.1155/2015/318125
12. Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia 2013; 85:84-94.
https://doi.org/10.1016/j.fitote.2013.01.003
13. Sarr M, Ngom S, Kane MO, Wale A, Diop D, Sarr B, et al. In vitro vasorelaxation mechanisms of bioactive compounds extracted from hibiscus sabdariffa on rat thoracic aorta. Nutr Metab2009; 6:45.
https://doi.org/10.1186/1743-7075-6-45
14. Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab 2021; 33(8):1519-45.
https://doi.org/10.1016/j.cmet.2021.07.001
15. Wang CCL, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus–mechanisms, management, and clinical considerations. Circulation 2016; 133(24):2459-502.
https://doi.org/10.1161/CIRCULATIONAHA.116.022194
16. Sarbini D, Sargowo D, Rohman MS. Hibiscus Sabdariffa Linn) terhadap NF-ĸβ, TNF-α dan ICAM-1 pada Human Umbilical Vein Endothelial Cells (HUVECs) Cultured yang dipapar Low Density Lipoprotein (LDL) Teroksidasi. J Exp Life Sci 2011; 1(2):102-10.
https://doi.org/10.21776/ub.jels.2011.001.02.07
17. Gonçalves I, Edsfeldt A, Ko NY, Grufman H, Berg K, Björkbacka H, et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol 2012; 32(26);1505-12.
https://doi.org/10.1161/ATVBAHA.112.249854
18. Pamukcu B, Lip GYH, Shantsila E. The nuclear factor--kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb Res 2011; 128(2):117-23.
https://doi.org/10.1016/j.thromres.2011.03.025
19. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-60.
https://doi.org/10.1016/j.redox.2018.09.025
20. de Winther MPJ, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25(5):904-14.
https://doi.org/10.1161/01.Atv.0000160340.72641.87
21. Huang CN, Chan KC, Lin WT, Su SL, Wang CJ, Peng CH. Hibiscus sabdariffa inhibits vascular smooth muscle cell proliferation and migration induced by high glucose--a mechanism involves connective tissue growth factor signals. J Agric Food Chem 2009; 57(8):3073-9.
https://doi.org/10.1021/jf803911n
22. Mohammed Yusof NL, Zainalabidin S, Mohd Fauzi N, Budin SB. Hibiscus sabdariffa (roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Appl Physiol Nutr Metab 2008; 43(12):1224-32.
https://doi.org/10.1139/apnm-2018-0084
23. Tseng TH, Kao ES, Chu CY, Chou FP, Wu WHL, Wang CJ. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food Chem Toxicol 1997; 35(12):1159-64.
https://doi.org/10.1016/s0278-6915(97)85468-3
24. ShamsEldeen AM, Fawzy A, Ashour H, Abdel-Rahman M, Nasr HE, Mohammed LA, et al. Hibiscus attenuates renovascular hypertension-induced aortic remodeling dose dependently: the oxidative stress role and Ang II/cyclophilin A/ERK1/2 signaling. Front Physiol 2023; 14:1116705.
https://doi.org/10.3389/fphys.2023.1116705
25. Arroyo SF, Medina IR, Beltran-Debon R, Pasini F, Joven J, Micol V, et al. Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res Int 2011; 44(5):1490-5.
https://doi.org/10.1016/j.foodres.2011.03.040
26. Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatsara N, Sato H, Hernsale A, et al. Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of Hibiscus sabdariffa L. in hypercholesterolemic rats. J Ethnopharmacol 2006; 103(2):252-60.
https://doi.org/10.1016/j.jep.2005.08.033
27. Chen CC, Chou FP, Ho YC, Lin WL, Wang CP, Kao ES, et al. Inhibitory effects of Hibiscus sabdariffa L extract on low-density lipoprotein oxidation and anti-hyperlipidemia in fructose-fed and cholesterol-fed rats. J Sci Food Agric 2004; 84(15):1989-96.
https://doi.org/10.1002/jsfa.1872
28. Mardiah, Zakaria FR, Prangdimurti E, Damanik R. Anti-inflammatory of Purple Roselle Extract in Diabetic Rats Induced by Streptozotocin. Procedia Food Science 2015; 3:182-9.
https://doi.org/10.1016/j.profoo.2015.01.020
29. Yang YS, Huang CN, Wang CJ, Lee YJ, Chen ML, Peng CH. Polyphenols of Hibiscus sabdariffa improved diabetic nephropathy via regulating the pathogenic markers and kidney functions of type 2 diabetic rats. J Funct Foods 2013; 5(2):810-9.
https://doi.org/10.1016/j.jff.2013.01.027
30. Chou CC, Wang CP, Chen JH, Lin HH. Anti-Atherosclerotic Effect of Hibiscus Leaf Polyphenols against Tumor Necrosis Factor-alpha-Induced Abnormal Vascular Smooth Muscle Cell Migration and Proliferation. Antioxidants 2019; 8(12):620.
https://doi.org/10.3390/antiox8120620
31. Salem MA, Zayed A, Beshay ME, Mesih MMA, Khayal RFB, Gerge FA, et al. Hibiscus sabdariffa L.: phytoconstituents, nutritive, and pharmacological applications. Adv Trad Med 2021; 22(23):1-11.
https://doi.org/10.1007/s13596-020-00542-7
32. Tahir HE. Assessment of antioxidant properties, instrumental and sensory aroma profile of red and white Karkade/Roselle (Hibiscus sabdariffa L.). J Food Meas Charact 2017; 11(1):1559-68.
https://doi.org/10.1007/s11694-017-9535-0
33. Nerdy N, El-Matury HJ, Barus BR, Ginting S, Zebua NF, Bakri TK. IOP Conference Series: Earth and Environmental Science Comparison of flavonoid content and antioxidant activity in calyces of two roselle varieties (Hibiscus sabdariffa L.) You may also like Appearance of Agronomic Characters and Genetic Parameters Estimation on M 3 Population of Roselle [Hibiscus sabdariffa Comparison of flavonoid content and antioxidant activity in calyces of two roselle varieties (Hibiscus sabdariffa L.). IOP Conference Series Earth and Environmental Science 2022; 956(012001).
34. Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem 2014; 165:424-43.
https://doi.org/10.1016/j.foodchem.2014.05.002
35. Cid-Ortega S, Guerrero-Beltrán J. Roselle calyces (Hibiscus sabdariffa), an alternative to the food and beverages industries: a review. J Food Sci Technol 2015; 52(11):6859-69.
https://doi.org/10.1007/s13197-015-1800-9
36. Bedi P, Bekele M, Gure G. Phyto-chemistry and pharmacological activities of Hibiscus sabdariffa Linn.-A review. Int. J Pure Appl Chem 2020; 21:41-54.
https://doi.org/10.9734/irjpac/2020/v21i2330301
37. Lin HH, Chen JH, Wang CJ. Chemopreventive properties and molecular mechanisms of the bioactive compounds in Hibiscus sabdariffa Linne. Curr Med Chem 2011; 18(8):1245-54.
https://doi.org/10.2174/092986711795029663
38. Pérez-Torres I, Ruiz-Ramírez A, Baños G, El-Hafidi M. Hibiscus sabdariffa Linnaeus (Malvaceae), curcumin and resveratrol as alternative medicinal agents against metabolic syndrome. Cardiovasc Hematol Agents Med Chem 2013; 11(1):25-37.
https://doi.org/10.2174/1871525711311010006
39. 39 Koala, M. et al. HPTLC Phytochemical Screening and Hydrophilic Antioxidant Activities of Apium graveolens L., Cleome gynandra L., and Hibiscus sabdariffa L. Used for Diabetes Management. American Journal of Analytical Chemistry 12, 15 (2021).
40. Riaz G, Chopra R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother 2018; 102:575-86.
https://doi.org/10.1016/j.biopha.2018.03.023
41. Guardiola S, Mach N. Therapeutic potential of Hibiscus sabdariffa: a review of the scientific evidence. Endocrinol Nutr 2014; 61(5):274-95.
https://doi.org/10.1016/j.endonu.2013.10.012
42. Ruiz-Ojeda FJ, Olza J, Gil Á, Aguilera CM. in Obesity (eds Amelia Marti del Moral & Concepción María Aguilera García) 1-15 (Academic Press, 2018).
43. Bagyura Z, Takacs A, Kiss L, Dosa E, Vadas R, Nguyen TD, et al. Level of advanced oxidation protein products is associated with subclinical atherosclerosis. BMC Cardiovasc Disord 2022; 22(1):5.
https://doi.org/10.1186/s12872-021-02451-2
44. Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants (Basel) 2019; 8(3):72.
https://doi.org/10.3390/antiox8030072
45. Balkis Budin S, Othman F, Louis SR, Abu Bakar M, Radzi M, Osman K, et al. Effect of alpha lipoic acid on oxidative stress and vascular wall of diabetic rats. Rom J Morphol Embryol 2009; 50(1):23-30.
46. Morales‐Luna E, Pérez-Ramírez IF, Salgado LM, Castaño-Tostado E, Gómez-Aldapa CA, Reynoso-Camacho R. The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content. J Sci Food Agric 2019; 99(2):596-605.
https://doi.org/10.1002/jsfa.9220
47. Chou CC, Wang CP, Chen JH, Lin HH. Anti-atherosclerotic effect of Hibiscus leaf polyphenols against tumor necrosis factor-alpha-induced abnormal vascular smooth muscle cell migration and proliferation. Antioxidants 2019; 8(12):620.
https://doi.org/10.3390/antiox8120620
48. Chao CY, Mong MC, Chan KC, Yin MC. Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol Nutr Food Res 2010; 54(3):388-95.
https://doi.org/10.1002/mnfr.200900087
49. Basu A, Rhone M, Lyons TJ. Berries: Emerging Impact on Cardiovascular Health. Nutr Rev 2010; 68(3):168-77.
https://doi.org/10.1111/j.1753-4887.2010.00273.x
50. Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, de Freitas V, et al. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. Int J Mol Sci 2020; 21(20):7464.
https://doi.org/10.3390/ijms21207464
51. Xue F, Nie X, Shi J, Liu Q, Wang Z, Li X, et al. Quercetin Inhibits LPS-Induced Inflammation and Ox-LDL-Induced Lipid Deposition. Front Pharmacol 2017; 8:40.
https://doi.org/10.3389/fphar.2017.00040
52. Lin CY, Huang CS, Huang CY, Yin MC. Anticoagulatory, antiinflammatory, and antioxidative effects of protocatechuic acid in diabetic mice. J Agric Food Chem 2009; 57(15):6661-7.
https://doi.org/10.1021/jf9015202
53. Zheoat AM, Gray AI, Igoli JO, Ferro VA, Drummond RM. Hibiscus Acid From Hibiscus Sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia 2019; 134:5-13.
https://doi.org/10.1016/j.fitote.2019.01.012
54. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al. Optimization of an Extraction Solvent for Angiotensin-Converting Enzyme Inhibitors From Hibiscus Sabdariffa L. Based on Its UPLC-MS/MS Metabolic Profiling. Molecules 2020; 25(10):2307.
https://doi.org/10.3390/molecules25102307
55. Herranz-López M, Olivares-Vicente M, Encinar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, et al. Multi-targeted molecular effects of Hibiscus sabdariffa polyphenols: An opportunity for a global approach to obesity. Nutrients 2017; 9(8):907.
https://doi.org/10.3390/nu9080907
56. Morales-Luna E, Pérez-Ramírez IF, Salgado LM, Castaño-Tostado E, Gómez-Aldapa CA, Reynoso-Camacho R. The Main Beneficial Effect of Roselle (Hibiscus Sabdariffa) on Obesity Is Not Only Related to Its Anthocyanin Content. J Sci Food Agric 2018; 99(2):596-605.
https://doi.org/10.1002/jsfa.9220
57. Braun M, Pietsch P, Schrör K, Baumann G, Felix SB. Cellular adhesion molecules on vascular smooth muscle cells. Cardiovasc Res 1999; 41(2):395-401.
https://doi.org/10.1016/S0008-6363(98)00302-2
58. Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1995; 1(4):447-56.
59. Boamponsem A, Boamponsem L. The role of inflammation in atherosclerosis. Adv Appl Sci Res 2011; 2:194-207.
60. Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules 2018; 8(3):80.
https://doi.org/10.3390/biom8030080
61. Kao ES, Tseng TH, Lee HJ, Chan KC, Wang CJ. Anthocyanin extracted from Hibiscus attenuate oxidized LDL-mediated foam cell formation involving regulation of CD36 gene. Chem Biol Interact 2009; 179:212-8.
https://doi.org/10.1016/j.cbi.2009.01.009