Modulation of inflammatory pathways in ischemic stroke rats by hypoxia-primed umbilical cord mesenchymal stem cells (UC-MSCs): Implications for IFN-γ and IL-10 signaling
Abstract
Ischemic stroke is a major global cause of disability and mortality. Inflammation plays a central role in its pathogenesis, characterized by elevated pro-inflammatory cytokines such as IFN-γ and reduced anti-inflammatory cytokines like IL-10. Mesenchymal stem cells (MSCs), especially those derived from the umbilical cord (UC-MSCs), exhibit enhanced immunomodulatory potential when preconditioned under hypoxia. This study aims to evaluate the effect of hypoxic-preconditioned UC-MSCs administration on IFN-γ and IL-10 levels in an ischemic stroke rat model. This in vivo experimental study employed a randomized posttest-only control group design with four groups of male Wistar rats (n=6 each), ranging from healthy controls, untreated group to stroke-induced groups treated with hypoxic UC-MSCs at different doses (1.5x106 and 3x106). IFN-γ and IL-10 levels in brain tissue of each group were measured via ELISA. Significant reduction in IFN-γ and elevation in IL-10 were observed in UC-MSC-treated groups, particularly at the 3×10⁶ cell dose compared to the untreated ischemic group (p<0.05). Hypoxic UC-MSCs reduce post-stroke inflammation by lowering IFN-γ and enhancing IL-10, indicating a promising immunomodulatory potential.
References
Boshuizen MCS, Steinberg GK. Stem cell-based immunomodulation after stroke: effects on brain repair processes. Stroke 2018; 49(6):1563-70.
https://doi.org/10.1161/STROKEAHA.117.020465
Choudhery MS, Arif T, Mahmood R, Harris DT. Therapeutic potential of mesenchymal stem cells in stroke: mechanisms and prospects. Biomolecules 2025; 15(4):558.
https://doi.org/10.3390/biomolecules15040558
Cunningham CJ, Redondo-Castro E, Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischeamic stroke. J Cereb Blood Flow Metab 2018; 38(8):1276-92.
https://doi.org/10.1177/0271678X18776802
De Palma ST, Hermans EC, Shamorkina TM, Trayford C, van Rijt S, Heck AJR, et al. Hypoxic preconditioning enhances the potential of MSC therapy in neonatal Hypoxic-ischemic brain injury. Stroke 2025; 56(7):1872-82.
https://doi.org/10.1161/STROKEAHA.124.048964
Lee BC, Kang KS. Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Res Ther 2020; 11(1):397.
https://doi.org/10.1186/s13287-020-01920-3
Lin YC, Ko TL, Shih YH, Lin MYA, Fu TW, Hsiao HS, et al. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 201; 42(7):2045-53.
https://doi.org/10.1161/STROKEAHA.110.603621
Noronha NC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapy. Stem Cells Res Ther 2019; 10(1):131.
https://doi.org/10.1186/s13287-019-1224-y
Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, et al. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. Biomed Pharmacother 2021; 142:112026.
https://doi.org/10.1016/j.biopha.2021.112026
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory capacity of MSC-based therapies. Front Immunol 2022; 13:1010399.
https://doi.org/10.3389/fimmu.2022.1010399
Shen D, Wang H, Zhu H, Jiang C, Xie F, Zhang H, et al. Pre-clinical efficacy evaluation of human umbilical cord mesenchymal stem cells for ischemic stroke. Front Immunol 2023; 13:1095469.
https://doi.org/10.3389/fimmu.2022.1095469
Stonesifer C, Corey S, Ghanekar S, Diamandis Z, Acosta SA, Borlongan CV. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131.
https://doi.org/10.1016/j.pneurobio.2017.07.004
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic efficacy of interferon-gamma and hypoxia-primed mesenchymal stromal cells and their extracellular vesicles: underlying mechanisms and potentials in clinical translation. Biomedicines 2024; 12(6):1369.
https://doi.org/10.3390/biomedicines12061369
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2025; 70:103-124
https://doi.org/10.1016/j.jare.2024.05.004
Yang M, Sun W, Xiao L, He M, Gu Y, Yang T, et al. Mesenchymal Stromal Cells Suppress Hippocampal Neuron Autophagy Stress Induced by Hypoxic-Ischemic Brain Damage: The Possible Role of Endogenous IL-6 Secretion. Neural Plast. 2020; 2020:8822579.
https://doi.org/10.1155/2020/8822579
Yari H, Mikhailova MV, Mardasi M, Jafarzadehgharehziaaddin M, Shahrokh S, Thangavelu L, et al. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13(1):423.
https://doi.org/10.1186/s13287-022-03122-5
Wang F, Chen X, Li J, Wang D, Huang H, Li X, et al. Dose-and time-dependent effects of human mesenchymal stromal cell infusion on cardiac allograft rejection in mice. Stem Cells and Development. 2021 Feb 15;30(4):203-13. https://doi.org/10.1089/scd.2019.0300
https://doi.org/10.1089/scd.2019.0300
Zhang Y, Huang Z, Hao H, Yan M. Hypoxic culture of umbilical cord mesenchymal stem cell-derived sEVs prompts peripheral nerve injury repair. Front Cell Neurosci 2023; 16:897224.
https://doi.org/10.3389/fncel.2022.897224
Wugeng S, Zan S, Liu Y, Bai Y, Hu A, Wei X, et al. MicroRNA-214-3p protects against myocardial ischemia-reperfusion injury by targeting demethylase lysine demethylase 3A. Regenerative Therapy. 2023 Jun 1;23:17-24.
https://doi.org/10.1016/j.reth.2023.01.008
Vohra M, Arora SK. Mesenchymal stem cells: the master immunomodulators. Exploration of Immunology 2023; 3(2):104-22.
https://doi.org/10.37349/ei.2023.00092
Wobma HM, Kanai M, Ma SP, Shih Y, Li HW, Duran-Struuck R, et al. Dual IFN-γ/hypoxia priming enhances immunosuppression of mesenchymal stromal cells through regulatory proteins and metabolic mechanisms. Journal of immunology and regenerative medicine. 2018 Mar 1;1:45-56.
https://doi.org/10.1016/j.regen.2018.01.001
Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining MSCs. Cell Transplant 2011; 20(5):655-67.
https://doi.org/10.3727/096368910X536473
McGettrick AF, O'Neill LAJ. The Role of HIF in Immunity and Inflammation. Cell Metab 2020; 32(4):524-36.
https://doi.org/10.1016/j.cmet.2020.08.002
Huang Y, Wu Q, Tam PK. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. International Journal of Molecular Sciences. 2022 Sep 2;23(17):10023.
https://doi.org/10.3390/ijms231710023
Yang M, Sun W, Xiao L, He M, Gu Y, Yang T, et al. Mesenchymal Stromal Cells Suppress Hippocampal Neuron Autophagy Stress Induced by Hypoxic‐Ischemic Brain Damage: The Possible Role of Endogenous IL‐6 Secretion. Neural Plasticity. 2020;2020(1):8822579.



