Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 11 No 2 (2017): Volume 11, Number 2, 2017

Seleksi isolat bakteri amilolitik dari rhizosfer Canna edulis, Kerr. untuk produksi poli hidroksi alkanoat dari limbah cair tapioka

DOI
https://doi.org/10.22146/jrekpros.33194
Submitted
November 16, 2023
Published
December 31, 2017

Abstract

Petrochemical-based plastic waste accumulated in landfills have been posing serious threat to the environment as this kind of plastics are non-biodegradable. Replacing petrochemical-based plastics with biodegradable plastics constitutes a challenging solution both in terms of mechanical design of the process and most importantly the availability of powerful local microorganism for the process. Therefore, the current study was searching for appropriate local microorganisms for poly hydroxyl alkanoate (PHA) production from starch waste, which was considered as one of cheap carbon sources. Waste water of cassava industry is a good resource of such starch waste water. The microbes were isolated from Canna edulis, Kerr. rhizosphere from Cangkringan.  The expected isolates were the bacteria enable the coupling of carbon catabolic pathways with PHA anabolic pathways. It was found that ten isolates were able to use waste water of cassava flour industry as carbon source. The PHA quantitative analysis by spectrophotometer showed that the isolate of Bacillus sp. C8 produced the highest PHA of 2,095 g/L. Further FTIR analysis showed specific bands near 1363,67 cm-1, 1641,42 cm-1, 2929,87 cm-1, 3408,22 cm-1 wavelengths which revealed the presence of CH3, ester carbonyl group (C=O), C-H and terminal OH group of PHA.

References

  1. Baskan K.S., Tutem E., Akyuz E., Ozen S., and Apak R., 2016, Spectrophotometric total reducing sugras assay based on cupric reduction, Tlanta, 147, 162-168.
  2. Diez-Pascual N.H., and Diez-Vicente A.L., 2014, Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties, Int. J. Mol., 15, 10950-10973.
  3. Gatechew A., and Woldensenbet F., 2016, Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material, BMC Res., 9, 1-9.
  4. Giedraityfa G. and Kalediene L., 2016. Purification and characterization of polyhydroxybutyrate (PHB) produced from thermophilic geobacillus sp. AY 946034 strain. Chemija 26(1) 38-45.
  5. Nurhayati, Prijambada I.D., Radjasa O.K., dan Widada J., 2017, Repetitive element palindromic PCR (Rep-PCR) as a genetic tool to study diversity in amylolytic bacteria, Advanced Science Letters, 23, 6458-6461.
  6. Putra, J.A., Wiratni, Syamsiah S., and Redyowati, S., 2007, Kinetics of lysis and extraction of intracellular PHB by Cupriavidus necator (CCUG 52238 T) using differential method by H2O2-chloroform”, Seminar Nasional Teknik Kimia UNPAR, April 2007.
  7. Vinish V., Sangetta S.H., Aravand J., Kanmani P., and Sathiskumar T., 2015, Optimizing the nutrient feeding strategy for PHA production by a novel strain of Enterobacter sp., Int. J. Environ. Sci. Technol., 12, 2757-2764.