Tri Baskoro Tunggul Satoto(1*), Alfin Harjuno Dwiputro(2), Rifa Nadhifa Risdwiyanto(3), A. Ulil Fadli Hakim(4), Nur Alvira Pascawati(5), Ajib Diptyanusa(6)
(1) Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (2) Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (3) Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (4) Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (5) Faculty of Public Health, Respati University (6) Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada (*) Corresponding Author
Abstract
The dengue virus that causes dengue hemorrhagic fever (DHF) in principle is transmitted to humans through the bites of Aedes sp. In Indonesia, the disease is endemic in most provinces, including in Gergunung Village in Klaten District, Central Java. The village has shown the highest incidence of DHF for the last 5 years. Changes in demographical conditions, environment, and climate condition are predictors of dengue fever. This study aimed to demonstrate the association among human behavioral variables, physical environmental factors, and climate elements with DHF transmission to develop active surveillance model of DHF outbreak by the analysis of potential predictors. The research was an observational analytic study with case control design. Study population was selected from households with DHF case in 2016 through 2017 and the controls with ratio of 1:2. In total, 34 households were labeled as case and 68 households were labeled as control. Data collection was performed by observations, direct measurements, and interviews. Data were analyzed using appropriate statistical analysis with probability value of p<0.05. The result showed that insecticide use, proper waste management, livestock breeding, presence of plastered floor, water-resistant walls, bedroom windows, doors, gutters, and open drainage system, all did not show association with DHF case occurrence (p>0.05). In contrast, houses closer to each other tended to have more DHF cases (p<0.05; OR: 2.96; 95% CI: 1.01–8.67). Physical environmental factors and climate elements did not demonstrate significant associations with DHF case occurrence in this study. Human behavioral variables, physical environmental factors, and climate elements may serve as potential predictors of DHF outbreak, hence should be put into the model to enhance early warning system.
Keywords
dengue; prediction; early warning system; surveillance; Indonesia
Hsu JC, Hsieh CL, Lu CY. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010-2015. Int J Infect Dis. 2017;54:43-9. https://doi.org/10.1016/j.ijid.2016.11.008
WHO. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva, Switzerland: World Health Organization; 2009.
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. https://doi.org/10.1038/nature12060
Dinas Kesehatan, Provinsi Jawa Tengah. Profil Kesehatan Provinsi Jawa Tengah. Jawa Tengah: Dinas Kesehatan Provinsi Jawa Tengah; 2015.
Puskesmas. Profil kesehatan Desa Gergunung. Klaten: Puskesmas Gergunung; 2017.
Wilder-Smith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. Med Clin North Am 2008;92(6):1377-90. https://doi.org/10.1016/j.mcna.2008.07.002
Banu S, Hu W, Hurst C, Tong S. Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop Med Int Health. 2011;16(5):598-607. https://doi.org/10.1111/j.1365-3156.2011.02734.x
Astrom C, Rocklov J, Hales S, Beguin A, Louis V, Sauerborn R. Potential distribution of dengue fever under scenarios of climate change and economic development. Ecohealth. 2012;9(4):448-54. https://doi.org/10.1007/s10393-012-0808-0
Ostfeld RS, Glass GE, Keesing F. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol. 2005;20(6):328-36. https://doi.org/10.1016/j.tree.2005.03.009
Thammapalo S, Meksawi S, Chongsuvivatwong V. Effectiveness of space spraying on the transmission of dengue/dengue hemorrhagic fever (DF/DHF) in an urban srea of Southern Thailand. J Tropical Med 2012;2012:652564. https://doi.org/10.1155/2012/652564
NASA. Giovanni: the bridge between data and science v.4.28 USA2018 [updated 31 August 2018. Available from: https://giovanni.gsfc.nasa.gov/giovanni/.
Barnard DR, Posey KH, Smith D, Schreck CE. Mosquito density, biting rate and cage size effects on repellent tests. Med Vet Entomol 1998;12(1):39-45. https://doi.org/10.1046/j.1365-2915.1998.00078.x
Bellinato DF, Viana-Medeiros PF, Araujo SC, Martins AJ, Lima JB, Valle D. Resistance status to the insecticides temephos, deltamethrin, and diflubenzuron in Brazilian Aedes aegypti populations. Biomed Res Int. 2016;2016:8603263.https://doi.org/10.1155/2016/8603263
Yoada RM, Chirawurah D, Adongo PB. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra. BMC Pub Health. 2014;14:697. https://doi.org/10.1186/1471-2458-14-697
Abeyewickreme W, Wickremasinghe AR, Karunatilake K, Sommerfeld J, Axel K. Community mobilization and household level waste management for dengue vector control in Gampaha district of Sri Lanka; an intervention study. Pathog Glob Health. 2012;106(8):479-87. https://doi.org/10.1179/2047773212Y.0000000060
Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol 2012;28(3):114-21. https://doi.org/10.1016/j.pt.2012.01.001
Yamamoto SS, Louis VR, Sié A, Sauerborn R. The effects of zooprophylaxis and other mosquito control measures against malaria in Nouna, Burkina Faso. Malaria J 2009;8(1):283. https://doi.org/10.1186/1475-2875-8-283
Donnelly B, Berrang-Ford L, Ross NA, Michel P. A systematic, realist review of zooprophylaxis for malaria control. Malar J. 2015;14:313. https://doi.org/10.1186/s12936-015-0822-0
Sofia S, Suhartono, Wahyuningsih NE. Hubungan kondisi lingkungan rumah dan perilaku keluarga dengan kejadian demam berdarah dengue di Kabupaten Aceh Besar. Jurnal Kesehatan Lingkungan Indonesia 2014;13(1):30-8.
Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 2005;72(2):209-20. https://doi.org/10.4269/ajtmh.2005.72.209
Reiter P. Oviposition and dispersion of Aedes aegypti in an urban environment. Bulletin de la Societe de Pathologie Exotique 1996;89(2):120-2.
Ritchie SA, Long S, Smith G, Pyke A, Knox TB. Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps. J Med Entomol. 2004;41(1):1-4. https://doi.org/10.1603/0022-2585-41.1.1
Rodrigues MdM, Marques GRAM, Serpa LLN, Arduino MdB, Voltolini JC, Barbosa GL, et al. Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil. Parasites Vectors. 2015;8:115. https://doi.org/10.1186/s13071-015-0703-y
CDC. Healthy housing reference manual. Atlanta: US Department of Health and Human Services; 2006.
Day JF. Mosquito oviposition behavior and vector control. Insects 2016;7(4):65. https://doi.org/10.3390/insects7040065
Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti: a review. Mem Inst Oswaldo Cruz. 2013;108 Suppl 1:11-7. https://doi.org/10.1590/0074-0276130395
Adeleke MA, Mafiana CF, Idowu AB, Adekunle MF, Sam-Wobo SO. Mosquito larval habitats and public health implications in Abeokuta, Ogun State, Nigeria. Tanzania J Health Res 2008;10(2):103-7. https://doi.org/10.4314/thrb.v10i2.14348
Satoto TBT, Diptyanusa A, Setiawan YD, Alvira N. Environmental factors of the home affect the density of Aedes aegypti (Diptera: Culicidae). Jurnal Kedokteran YARSI. 2017;25(1):041-51.
Garcia-Rejon J, Lorono-Pino MA, Farfan-Ale JA, Flores-Flores L, Del Pilar Rosado-Paredes E, Rivero-Cardenas N, et al. Dengue virus-infected Aedes aegypti in the home environment. Am J Trop Med Hyg. 2008;79(6):940-50. https://doi.org/10.4269/ajtmh.2008.79.940
Kampango A, Bragança M, Sousa Bd, Charlwood JD. Netting barriers to prevent mosquito entry into houses in southern Mozambique: a pilot study. Malaria J 2013;12:99-. https://doi.org/10.1186/1475-2875-12-99
Getis A, Morrison AC, Gray K, Scott TW. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg. 2003;69(5):494-505. https://doi.org/10.4269/ajtmh.2003.69.494
Kawada H, Takemura SY, Arikawa K, Takagi M. Comparative study on nocturnal behavior of Aedes aegypti and Aedes albopictus. J Med Entomol. 2005;42(3):312-8. https://doi.org/10.1603/0022-2585(2005)042[0312:CSONBO]2.0.CO;2
van Loon JJA, Smallegange RC, Bukovinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chemical Ecol 2015;41(6):567-73. https://doi.org/10.1007/s10886-015-0587-5
Farnesi LC, Martins AJ, Valle D, Rezende GL. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures. Mem Inst Oswaldo Cruz. 2009;104(1):124-6. https://doi.org/10.1590/S0074-02762009000100020
Mohammed A, Chadee DD. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop. 2011;119(1):38-43. https://doi.org/10.1016/j.actatropica.2011.04.004
Muturi EJ, Blackshear M, Jr., Montgomery A. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol. 2012;37(1):154-61. https://doi.org/10.1111/j.1948-7134.2012.00212.x
Marinho RA, Beserra EB, Bezerra-Gusmão MA, Porto VdS, Olinda RA, dos Santos CAC. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. J Vector Ecol 2016;41(1):1-10. https://doi.org/10.1111/jvec.12187
Costa EAPdA, Santos EMdM, Correia JC, Albuquerque CMRd. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev Bras Entomol. 2010;54(3):488-93. https://doi.org/10.1590/S0085-56262010000300021
Impoinvil DE, Cardenas GA, Gihture JI, Mbogo CM, Beier JC. Constant temperature and time period effects on Anopheles gambiae egg hatching. J Am Mosq Control Assoc. 2007;23(2):124-30. https://doi.org/10.2987/8756-971X(2007)23[124:CTATPE]2.0.CO;2
Stewart Ibarra AM, Ryan SJ, Beltran E, Mejia R, Silva M, Munoz A. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS One. 2013;8(11):e78263. https://doi.org/10.1371/journal.pone.0078263
Phillips ML. Dengue reborn: widespread resurgence of a resilient vector. Environ Health Perspect 2008;116(9):A382-8. https://doi.org/10.1289/ehp.116-a382
Getachew D, Tekie H, Gebre-Michael T, Balkew M, Mesfin A. Breeding sites of Aedes aegypti: potential dengue vectors in Dire Dawa, East Ethiopia. Interdiscip Perspect Infect Dis 2015;2015:8. https://doi.org/10.1155/2015/706276
Choi Y, Tang CS, McIver L, Hashizume M, Chan V, Abeyasinghe RR, et al. Effects of weather factors on dengue fever incidence and implications for interventions in Cambodia. BMC Public Health. 2016 Mar 8;16:241. doi: 10.1186/s12889-016-2923-2. https://doi.org/10.1186/s12889-016-2923-2.