Angiotensin converting enzyme 2 (ACE2), COVID-19 and cardiac injury: what cardiologist should know

https://doi.org/10.19106/JMedSciSI005203202009

Sidhi Laksono(1*), Budhi Setianto(2), Steven Philip Surya(3)

(1) Fakultas Kedokteran Universitas UHAMKA
(2) Department of cardiology and vascular medicine of National Cardiovascular Center of Harapan Kita, Faculty of medicine of Universitas Indonesia
(3) Army Hospital Kesdam Jaya Cijantung, Jakarta
(*) Corresponding Author

Abstract


Coronavirus disease 2019 (COVID-19) has already stated as a pandemic by the World Health Organization (WHO). Until now, Indonesia has also infected with this severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. All medical staffs join hand by hand to overcome this pandemic, not only pulmonologist but also cardiologist. Early reports from China showed that cardiovascular comorbidities add more mortality than without comorbid. Cardiac implication of this infection is cardiac injury. Viral pathology and pathophysiology that induced cardiac injury is still debatable and not well understood. Angiotensin-converting enzyme 2 (ACE2) has emerged as a key regulator of renin-angiotensin system in cardiovascular disease. ACE2 has been postulated as one of the pathophysiology of COVID-19 and cardiac injury.



Keywords


COVID-19; SARS-CoV-2; cardiac injury; pathophysiology; ACE2;

Full Text:

PDF


References

  1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 2020; 92(4):401-2. https://doi.org/10.1002/jmv.25678.
  2. Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91:264-6. https://doi.org/10.1016/j.ijid.2020.01.009
  3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  4. Zheng YY, Ma YT, Zhang YJ, Xie X. Covid-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5):259-60. https://doi.org/10.1038/s41569-020-0360-5
  5. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004; 136(1):95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x
  6. Lippi G, Lavie CJ, Gomar FS.Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis 2020; 0033-0620(20):30055-4. https://doi.org/10.1016/j.pcad.2020.03.001
  7. Wu Z, McGoogan JM. Characteristic of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020; 323(13):1239-42. https://doi.org/10.1001/jama.2020.2648
  8. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5:536-44.
  9. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characteristic of the novel 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1):221-36. https://doi.org/10.1080/22221751.2020.1719902
  10. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronavirus. Nat Rev Microbiol 2016; 14(8):523-34. https://doi.org/10.1038/nrmicro.2016.81
  11. Chowell G, Abdirizak F, Lee S, Lee J, Jung E, Nishiura H, et al. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med 2015; 13:210. https://doi.org/10.1186/s12916-015-0450-0
  12. Zhou P, Yang X, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798):270-3. https://doi.org/10.1038/s41586-020-2012-7
  13. Peiris JS, Chi CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003; 361(9371):1767-72. https://doi.org/10.1016/s0140-6736(03)13412-5
  14. Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118(8):1313-26. https://doi.org/10.1161/CIRCRESAHA.116.307708
  15. Wang J, He W, Guo L, Zhang Y, Li H, Han S, et al. The ACE2-Ang(1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Molecular Medicine Reports 2017; 16(2):1973-81. https://doi.org/10.3892/mmr.2017.6848
  16. Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term complications. Eur Heart J 2020; 18:231. https://doi.org/10.1093/eurheartj/ehaa231
  17. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39(7):618-25. https://doi.org/10.1111/j.1365-2362.2009.02153.x
  18. Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118(8):1313-26. https://doi.org/10.1161/CIRCRESAHA.116.307708
  19. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009; 39(7):618-25. https://doi.org/10.1111/j.1365-2362.2009.02153.x
  20. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2):271-80. https://doi.org/10.1016/j.cell.2020.02.052
  21. Chemaly M, McGilligan V, Gibson M, Clauss M, Watterson S, Alexander HD, et al. Role of tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and associated proteins in coronary artery disease and cardiac events. Arch Cardiovasc Dis 2017; 110(12):700-11. https://doi.org/10.1016/j.acvd.2017.08.002
  22. Zhang YH, Zhang YH, Dong XF, Hao QQ, Zhou XM, Yu QT, et al. ACE2 and ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res 2015; 63(3-4):253-60. https://doi.org/10.1007/s00011-015-0805-1
  23. Ferrario CM, Jessup J, Chappell MC, Averill DB, BBrosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blocker on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111(20):2605-10. https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  24. Kuster GM, Pfister O, Burkard T, Zhou Q, Twerenbold R, Haaf P, et al.SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J 2020; ehaa235. https://doi.org/10.1093/eurheartj/ehaa235
  25. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111(20):2605-10. https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  26. Deshotels MR, Xia H, Sriramula S, Lazartigues E, Filipeanu CM. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension 2014; 64(6):1368- 75. https://doi.org/10.1161/HYPERTENSIONAHA.114.03743
  27. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; 382(17):1653-59. https://doi.org/10.1056/NEJMsr2005760Patel AB, Verma
  28. A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA 2020; 24. https://doi.org/10.1001/jama.2020.4812



DOI: https://doi.org/10.19106/JMedSciSI005203202009

Article Metrics

Abstract views : 5499 | views : 4012




Copyright (c) 2020 Sidhi Laksono, Budhi Setianto, Steven Philip Surya

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats

 

Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://bukutamu.pta-medan.go.id/-/tox/ https://bukutamu.pta-medan.go.id/-/dmx/ https://bukutamu.pta-medan.go.id/-/maxx/ https://ikm.pta-medan.go.id/777x/ https://ikm.pta-medan.go.id/danax/ https://ikm.pta-medan.go.id/thx/ https://ipak.pta-medan.go.id/pulsax/ https://ipak.pta-medan.go.id/5000/ https://ipak.pta-medan.go.id/gcx/ https://jdih.pta-medan.go.id/dm/ https://jdih.pta-medan.go.id/mx/ https://jdih.pta-medan.go.id/th/ https://ptsp.pta-medan.go.id/200/ https://ptsp.pta-medan.go.id/raffi/ https://ptsp.pta-medan.go.id/tos/ https://sipp-portal.pta-medan.go.id/gc/ https://sipp-portal.pta-medan.go.id/ps/ https://sipp-portal.pta-medan.go.id/d5000/ https://karir.stmik-dci.ac.id/wp-content/bdslt/ https://karir.stmik-dci.ac.id/wp-content/bdtg/ https://karir.stmik-dci.ac.id/wp-content/qris/ https://bukutamu.pta-medan.go.id/developer/demox/ https://bukutamu.pta-medan.go.id/developer/xthaix/ https://bukutamu.pta-medan.go.id/system/xtx/