Clinical cardiac manifestations in patients with coronavirus disease 2019 (COVID-19)

https://doi.org/10.19106/JMedSciSI005203202007

Hafizha Herman(1), Putrika PR Gharini(2*), Lucia Kris Dinarti(3)

(1) Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 2 million people worldwide with case fatality rates between 3-15%. The pathophysiology of this newly emerging disease in affecting cardiovascular system is poorly understood. This review aimed to understand from various retrospective studies and case reports that have been published and updated during the pandemic of COVID-19 related to the underlying mechanism and cardiovascular interaction with coronavirus. A literature search was done with Google search, PubMed, European Society of Cardiology (ESC) and Journal of American Medical Association (JAMA) network since the early days of COVID-19 pandemic. Clinical presentation may be asymptomatic or the severe cases will have acute respiratory distress syndrome (ARDS). Protein spikes of SARS-CoV-2 virus use the angiotensin-converting enzyme 2 (ACE2) as viral entry to host cells. Due to the upregulation of ACE2, people with any pre-existing cardiac diseases are more vulnerable to the infection and more likely to have a severe condition of COVID-19 infection with a higher risk of mortality. On the other hand, ACE2 has protective effects against myocardial inflammation and lung injuries. Several cases of COVID-19 infection may have cardiac manifestations as a chief complaint or acute cardiac injury as the complication. Recent case reports show that acute cardiac injury, myocarditis, cardiogenic shock, thromboembolism, and arrhythmias could be the complications of COVID-19 even without history or risk factors of cardiovascular disease. There are several hypotheses related to the mechanism of acute cardiac injury in COVID-19 patients, including damage through ACE2 receptors, hypoxia, cardiac microvascular damage, and inflammatory response.COVID-19 infection can cause many interactions in the cardiovascular system, whether the patients already had chronic heart disease or not. Considering the lack of evidence of the RAS inhibitor in COVID-19, the use of ACE inhibitor/ARB should be continued unless contraindicated and may be beneficial in patients with hypertension, heart failure and diabetes mellitus. Early recognition of cardiac manifestations from COVID-19 infections will be the key to prevent short and long term cardiac adverse events.

Keywords


ACE inhibitor; acute cardiac injury; cardiogenic shock; coronavirus; myocarditis;

Full Text:

PDF


References

  1. Liu R, Ming X, Zhu H, Song L, Gao Z, Gao L, et al. Association of cardiovascular manifestations with in-hospital outcomes in patients with COVID-19: A hospital staff data. Med Rxiv 2020; (26):3-14. https://doi.org/10.1101/2020.02.29.20029348
  2. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven Protease Inhibitor. Cell 2020; 1-10. https://doi.org/10.1016/j.cell.2020.02.052
  3. WHO. Coronavirus disease (COVID-2019) Situation Report - 132. WHO. 2020.
  4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  5. ACC. COVID-19 clinical guidance for the cardiovascular care team. American Colleagueof Cardiology 2020; 1-4.
  6. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17:259-60. https://doi.org/10.1038/s41569-020-0360-5
  7. Sellers SA, Hagan RS, Hayden FG, Fischer WA. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza Other Respi Viruses 2017; 11(5):372-93 https://doi.org/10.1111/irv.12470
  8. Nguyen JL, Yang W, Ito K, Matte TD, Shaman J, Kinney PL. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol 2016; 1(3):274-81. https://doi.org/10.1001/jamacardio.2016.0433
  9. Xiong T, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J 2020; 41(19):1798-800. https://doi.org/10.1093/eurheartj/ehaa231
  10. Wu D, Wu T, Liu Q, Yang Z. The SARS-CoV-2 outbreak: What we know. Int J Infect Dis 2020; 94:44-8. https://doi.org/10.1016/j.ijid.2020.03.004
  11. Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci 2020; 24(4):2012-9.
  12. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4):424-32. https://doi.org/10.1002/jmv.25685
  13. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4):586-90. https://doi.org/10.1007/s00134-020-05985-9
  14. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012; 2012:256294. https://doi.org/10.1155/2012/256294
  15. Nicin L, Abplanalp WT, Mellentin H, Katthi B, Tombor L, John D, et al. Cell type specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J 2020; ehaa311. https://doi.org/10.1093/eurheartj/ehaa311
  16. Kuster GM, Osswald S, Haaf P, Widmer AF. SARS-CoV2 : should inhibitors of the renin - angiotensin system be withdrawn in patients with COVID-19 ? Eur Heart J 2020; 41(19):1801–3. https://doi.org/10.1093/eurheartj/ehaa235
  17. South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020; 19:6-8. https://doi.org/10.1038/s41581-020-0279-4
  18. Bavishi C, Maddox TM, Messerli FH. Coronavirus disease 2019 (COVID-19) infection and renin angiotensin system blockers. JAMA Cardiol 2020; 19(8):1965-74. https://doi.org/10.1001/jamacardio.2020.1282
  19. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med 2020; 382:1653-9. https://doi.org/10.1056/NEJMsr2005760
  20. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; cvaa078. https://doi.org/10.1093/cvr/cvaa078
  21. Horn EM, Failure AH, Vascular P, Programs D, Chakinala M, Oudiz R, et al. Could pulmonary arterial hypertension (PAH) patients be at a lower risk from severe COVID-19? Pulm Circ 2020; 10(2): 2045894020922799. http://doi.org/10.1177/2045894020922799
  22. Chen T, Wu D, Chen H, Yan W, Wang T, Guo W, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368. https://doi.org/10.1136/bmj.m1091
  23. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5):531-8. https://doi.org/10.1007/s00392-020-01626-9
  24. Siddiqi HK, Mehra MR. COVID-19 Illness in native and immunosuppressed states: aclinical-therapeutic staging proposal. J Hear Lung Transplant 2020; 39(5): 405–7. https://doi.org/10.1016/j.healun.2020.03.012
  25. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 2600(20):1-7. https://doi.org/10.1016/S2213-2600(20)30079-5
  26. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; e200950. https://doi.org/10.1001/jamacardio.2020.0950
  27. Zeng J-H, Liu Y-X, Yuan J, Wang F-X, Wu W-B, Li J-X, et al. First case of COVID-19 infection with fulminant myocarditis complication: case report and insights. Infection 2020; 1-5. https://doi.org/10.20944/preprints202003.0180.v1
  28. Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020; cvaa106. https://doi.org/10.1093/cvr/cvaa106
  29. Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr Clin Res Rev 2020; 14(3):247-50. https://doi.org/10.1016/j.dsx.2020.03.013
  30. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J 2020; ehaa190. https://doi.org/10.1093/eurheartj/ehaa190
  31. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 2600(20):19-21. https://doi.org/10.1016/S2213-2600(20)30076-X
  32. Sala S, Peretto G, Gramegna M, Palmisano A, Villatore A, Vignale D, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J 2020; 41(19):1861-2. https://doi.org/10.1093/eurheartj/ehaa286
  33. Caforio ALP, Malipiero G, Marcolongo R, Iliceto S. Myocarditis: aclinical overview. Curr Cardiol Rep 2017; 19(7):63. https://doi.org/10.1007/s11886-017-0870-x
  34. Hua A, O’Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J 2020; ehaa253 https://doi.org/10.1093/eurheartj/ehaa253
  35. Wang D, Li S, Jiang J, Yan J, Zhao C, Wang Y, et al. Chinese society of cardiology expert consensus statement on the diagnosis and treatment of adult fulminant myocarditis. Sci China Life Sci 2019; 62(2):187-202. https://doi.org/10.1007/s11427-018-9385-3
  36. Chen D, Li X, Song Q, Hu C, Su F, Dai J. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). Med Rxiv 2020; 2019:2020.02.27.20028530. https://doi.org/10.1101/2020.02.27.20028530
  37. Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological society of North America expert consensus statement on reporting chest CT findings related to COVID-19. Endorsed by the society of thoracic radiology, the American College of Radiology, and RSNA. J Thorac Imaging 2020; 10.1097/RTI.0000000000000524. https://doi.org/10.1097/RTI.0000000000000524
  38. WHO Evidence Review Group. The cardiotoxicity of antimalarials. WHO/HTM/GMP/MPAC/2017.2. Geneva: World Health Organization, 2017.
  39. Trifirò G, De Ridder M, Sultana J, Oteri A, Rijnbeek P, Pecchioli S, et al. Use of azithromycin and risk of ventricular arrhythmia. CMAJ 2017; 189(15):E560-8. https://doi.org/10.1503/cmaj.160355
  40. Roden DM, Harrington RA, Poppas A, Russo AM. Considerations for drug interactions on QTc in exploratory COVID-19 (coronavirus disease 2019) treatment. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.047521
  41. Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J 2020; 41(19):1858. https://doi.org/10.1093/eurheartj/ehaa254
  42. Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, Henderson IR, Watson SP, Cunningham AF. Understanding infection-induced thrombosis: lessons learned from animal models. Front Immunol 2019; 10:2569. https://doi.org/10.3389/fimmu.2019.02569
  43. Yeo TJ, Wang Y-TL, Low TT. Have a heart during the COVID-19 crisis: Making the case for cardiac rehabilitation in the face of an ongoing pandemic. Eur J Prev Cardiol 2020; 27(9):903-5. https://doi.org/10.1177/2047487320915665
  44. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223):507-13. https://doi.org/10.1016/S0140-6736(20)30211-7
  45. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18):1708-20. https://doi.org/10.1101/2020.02.06.20020974
  46. Hui H, Zhang Y, Yang X, Wang X, He B, Li L, et al. Clinical and radiographic features of cardiac injury in patients with 2019 novel coronavirus pneumonia. Med Rxiv 2020; 2020.02.24.20027052. https://doi.org/10.1101/2020.02.24.20027052
  47. Liu K, Fang Y-Y, Deng Y, Liu W, Wang M-F, Ma J-P, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl) 2020; 133(9):1025-31. https://doi.org/10.1142/S0192415X20500445
  48. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46(5):846-8. https://doi.org/10.1007/s00134-020-06028-z
  49. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 2020; 368:m792.
  50. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy Eur J Allergy Clin Immunol 2020; 00:1-12. https://doi.org/10.1111/all.14238
  51. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 6736(20):1-9. https://doi.org/10.1016/S0140-6736(20)30566-3
  52. Fried JA, Ramasubbu K, Bhatt R, Topkara VK, Clerkin KJ, Horn E, et al. The variety of cardiovascular presentations of COVID-19. Circulation 2020. https://doi.org/10.1161/CIRCULATIONAHA.120.047164
  53. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 2019:4-9. https://doi.org/10.1001/jamacardio.2020.1096
  54. Kim I, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J 2020; 41(19):1859 https://doi.org/10.1093/eurheartj/ehaa288
  55. Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020; 22(5):911-5. https://doi.org/10.1002/ejhf.1828
  56. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA2020; 323(11):1061-9. https://doi.org/10.1001/jama.2020.1585



DOI: https://doi.org/10.19106/JMedSciSI005203202007

Article Metrics

Abstract views : 2670 | views : 3188




Copyright (c) 2020 Hafizha Herman, Putrika PR Gharini, Lucia Kris Dinarti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats

 

Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at http://jurnal.ugm.ac.id/bik/.