Serum IL-17 levels correlate with urinary albumin in systemic lupus erythematosus (SLE) pregnant mice model

Sari Wahyuni(1*), Agustina Ida Pratiwi(2), Sofia Mawaddah(3), Retno Setyo Iswati(4)

(1) Poltekkes Kemenkes Palembang, South Sumatra
(2) STIK Sint Carolus, Jakarta
(3) Poltekkes Kemenkes Palangka Raya, Central Kalimantan
(4) Universitas PGRI Adi Buana, Surabaya, East Java
(*) Corresponding Author


Women of reproductive age are more likely to have systemic lupus erythematosus (SLE), which frequently results in health issues, particularly during pregnancy. A normal pregnancy's first trimester shows a marked increase in the percentage of Th17 cells, which then steadily declined in the second and third trimesters. Meanwhile, IL-17 level increases in SLE-affected pregnant women. This study aimed to analyze the correlation between serum IL-17 and pregnancy outcome (fetus weight, blood pressure, urinary albumin) in SLE pregnant animal models. Twenty mice were randomly divided into two groups, including the normal pregnant group and SLE-pregnant group. The SLE pregnant mice was made by intraperitoneally induction of 0.5 mL pristane. Serum IL-17 was assayed by enzyme-linked immunosorbent assay (ELISA) method. The serum IL-17 level, the blood pressure and urinary albumin were significantly higher in the SLE pregnant mice group than those of the normal pregnant group (p< 0.05). The weight of fetus was significantly smaller in the group of SLE pregnant mice group than the normal pregnant group (p< 0.05). There was a significantly positive correlation between the serum IL-17 level and urinary albumin (p = 0.042; r = 0.459). In conclusion, serum IL-17 levels correlate with urine albumin in SLE pregnant models, but do not correlate with fetus weight and blood pressure.


autoantibody; pathophysiology; pregnancy outcome

Full Text:



Nares EM, Iniguez AL, Mercado HO. Systemic lupus erythematosus flare triggered by a spider bite. Joint Bone Spine 2016; 83(1):85-7.
2.Clark CA, Spitzer KA, Laskin CA. Decrease in pregnancy loss rates in patients with systemic lupus erythematosus over a 40-year period. J Rheumatol 2005; 32(9):1709-12.
3.Clowse MEB, Jamison M, Myers E, James AH. A national study of the complications of lupus in pregnancy. Am J Obstet Gynecol 2008; 199(2):127.e1-6.
4.Clowse ME, Chakravarty E, Costenbader KH, Chambers C, Michaud K. The effects of infertility, pregnancy loss, and patient concerns on family size of women with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res (Hoboken) 2012; 64(5):668-74.
5.Yasmeen S, Wilkins EE, Field NT, Sheikh RA, Gilbert WM. Pregnancy outcomes in women with systemic lupus erythematosus. J Matern Fetal Med 2001; 10(2):91-6.
6.Contin-Bordes C, Lazaro E, Pellegrin JL, Viallard JF, Moreau JF, Blanco P. Systemic lupus erythematosus: from pathophysiology to treatment. Rev Med Interne 2009; 30(12 Suppl):H9-13.
7.Crispín JC, Liossis SN, Kis-Toth K, Lieberman LA, Kyttaris VC, Juang YT, et al. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med 2010; 16(2):47-57.
8.Crispín JC, Kyttaris VC, Terhorst C, Tsokos GC. T cells as therapeutic targets in SLE. Nat Rev Rheumatol 2010; 6(6):317-25.
9.Jones BM, Liu T, Wong RW. Reduced in vitro production of interferon-gamma, interleukin-4 and interleukin-12 and increased production of interleukin-6, interleukin-10 and tumour necrosis factor-alpha in systemic lupus erythematosus. Weak correlations of cytokine production with disease activity. Autoimmunity 1999; 31(2):117-24.
10.Gómez D, Correa PA, Gómez LM, Cadena J, Molina JF, Anaya JM. Th1/Th2 cytokines in patients with systemic lupus erythematosus: is tumor necrosis factor alpha protective? Semin Arthritis Rheum 2004; 33(6):404-13.
11.Wong CK, Ho CY, Li EK, Lam CW. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 2000; 9(8):589-93.
12.Varghese S, Crocker I, Bruce IN, Tower C. Systemic lupus erythematosus, regulatory T cells and pregnancy. Expert Rev Clin Immunol 2011; 7(5):635-48.
13.Roy JS, Das PP, Data A. SLE in pregnancy. Bangabandhu Sheikh Mujib Medical University J 2010; 3(1):54-9.
14.Nakashima A, Ito M, Yoneda S, Shiozaki A, Hidaka T, Saito S. Circulating and decidual Th17 cell levels in healthy pregnancy. Am J Reprod Immunol 2010; 63(2):104-9.
15.Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci U S A 2013; 110(3):E231-40.
16.Torricelli M, Bellisai F, Novembri R, Galeazzi LR, Iuliano A, Voltolini C, et al. High levels of maternal serum il-17 and activin a in pregnant women affected by systemic lupus erythematosus. Am J Reprod Immunol 2011; 66(2):84-9.
17.Satoh M, Reeves WH. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med 1994; 180(6):2341-6.
18.Zong T, Lai L, Hu J, Guo M, Li M, Zhang L, et al. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice. J Hazar Mater 2015; 297:25-33.
19.Calleja-Agius J, Muttukhrisna S, Jauniaux E. The role of tumor necrosis factor-receptors in pregnancy with normal and adverse outcome. Int J Inter Cyt Mediat Res 2012; 4(1):1-15.
20.Yung S, Chan TM. Anti-DNA antibodies in the pathogenesis of lupus nephritis--the emerging mechanisms. Autoimmun Rev 2008; 7(4):317-21.
21.Adnyana IK, Yulinan E, Maeistuti N, Setiawan F. Evaluation of ethanolic extracts of mullaca (Physalisangulata L.) herbs for treatment of lupus disease in mice induced pristane. Procedia Chemistry 2014; 13:186-93.
22.Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res Ther 2011; 13(1):202.
23.Munoz LE, Lauber K, Schiller M, Manfredi AA, Herrmann M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat Rev Rheumatol 2010; 6(5):280-9.
24.Ma J, Yu J, Tao X, Cai L, Wang J, Zheng SG. The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients. Clin Rheumatol 2010; 29(11):1251-8.
25.Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, et al. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 2010; 12(2):R53.
26.Wong CK, Lit LCW, Tam LS, Li EKM, Wong PTY, Lam CWK. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 2008; 127(3):385-93.
27.Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 2009; 10(7):778-85.
28.Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 2011; 12(3):274-54.
29.Nacionales DC, Weinstein JS, Yan XJ, Albesiano E, Lee PY, Kelly-Scumpia KM, et al. B cell proliferation, somatic hypermutation, class switch recombination, and autoantibody production in ectopic lymphoid tissue in murine lupus. J Immunol 2009; 182(2):4226-36.


Article Metrics

Abstract views : 802 | views : 836

Copyright (c) 2023 Sari Wahyuni, Agustina Ida Pratiwi, Sofia Mawaddah, Retno Setyo Iswati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats


Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at