Unique truncated and non-synonymous mutations in functional domains of ORF3a SARS-CoV-2
Jeanne Elvia Christian(1*), Hartiyowidi Yuliawuri(2)
(1) Calvin Institute of Technology, Jakarta, Indonesia
(2) Calvin Institute of Technology, Jakarta, Indonesia
(*) Corresponding Author
Abstract
Previous studies showed that mutations in the SARS-CoV-2 ORF3a protein can influence viral pathogenesis. Therefore, it is necessary to observe mutations, especially in the functional domain of the protein. We observed the presence of mutations in the ORF3a protein by analyzing 5,131 samples from the GISAID database since it was first discovered in March 2020 until November 2021. The sequence was aligned using Clustal Omega Multiple Sequence Alignment from EMBL-EBI and analyzed using BioEdit version 7.2.5 software using reference sequences NC045512. Samples having the letter N were omitted from the analysis. The effect of point mutations on proteins was analyzed using the Protein Variation Effect Analyzer (PROVEAN) v1.1.3 software. The functional domains of the ORF3a protein were visualized using RasWin software. We identified 312 mutations in the SARS-CoV-2 ORF3a protein. In addition, from 5,131 samples, 915 samples were found to be truncated in the C-terminal region of the protein. These non-synonymous mutations data in functional domains and truncated sequences indicate that amino acid changes in the ORF3a protein require further studies to determine the effect of viral pathogenicity in humans.
Keywords
Full Text:
PDFReferences
1.Hassan SS, Attrish D, Ghosh S, Choudhury PP, Roy B. Pathogenic perspective of missense mutations of ORF3a protein of SARS-CoV-2. Virus Res 2021; 300:198441.
https://doi.org/10.1016/j.virusres.2021.198441
2.Suryawanshi RK, Koganti R, Agelidis A, Patil CD, Shukla D. Dysregulation of cell signaling by SARS-CoV-2. Trends Microbiol 2021; 29(3):224-37.
https://doi.org/10.1016/j.tim.2020.12.007
3.Issa E, Merhi G, Panossian B, Salloum T, Tokajian S. SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. mSystems 2020; 5(3):e00266-20.
https://doi.org/10.1128/mSystems.00266-20
4.Zhang J, Ejikemeuwa A, Gerzanich V, Nasr M, Tang Q, Simard JM, et al. Understanding the role of SARS-CoV-2 ORF3a in viral pathogenesis and COVID-19. Front Microbiol 2022; 13:854567.
https://doi.org/10.3389/fmicb.2022.854567
5.Ouzounis CA. A recent origin of Orf3a from M protein across the coronavirus lineage arising by sharp divergence. Comput Struct Biotechnol J 2020; 18:4093-102.
https://doi.org/10.1016/j.csbj.2020.11.047
6.Tan Y, Schneider T, Shukla PK, Chandrasekharan MB, Aravind L, Zhang D. Unification and extensive diversification of M/Orf3-related ion channel proteins in coronaviruses and other nidoviruses. Virus Evol 2021; 7(1):veab014.
https://doi.org/10.1093/ve/veab014
7.Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10:50.
https://doi.org/10.3389/fmicb.2019.00050
8.Rodriguez CC, Honrubia JM, Gutiérrez-álvarez J, Dediego ML, Nieto-torres JL, Jimenez-guardeño JM, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 2018; 9(3):e02325-17.
https://doi.org/10.1128/mBio.02325-17
9.Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol 2021; 433(2):166725.
https://doi.org/10.1016/j.jmb.2020.11.024
10.Majumdar P, Niyogi S. ORF3a mutation associated higher mortality rate in SARS-CoV-2 infection. Epidemiol Infect 2020; 148:e262.
https://doi.org/10.1017/S0950268820002599
11.Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, et al. Genome-wide characterization of SARS-CoV-2 cytopathogenic proteins in the search of antiviral targets. mBio 2022; 13(1):e016922.
https://doi.org/10.1128/mbio.00169-22
12.Azad GK, Khan PK. Variations in Orf3a protein of SARS-CoV-2 alter its structure and function. Biochem Biophys Reports 2021; 26:100933.
https://doi.org/10.1016/j.bbrep.2021.100933
13.WHO. Tracking SARS-CoV-2 variants [Internet]. 2022. [cited 2022 June 22] Available from: https://www.who.int/activities/tracking-SARS-CoV-2-variants
14.Yuliawuri H, Christian JE, Steven N. Non-synonymous mutation analysis of SARS-CoV-2 ORF3a in Indonesia. Mol Cell Biomed Sci 2022; 6(1):20.
https://doi.org/10.21705/mcbs.v6i1.221
15.Sobhy H. The potential functions of protein domains during COVID infection: an analysis and a review. Covid 2021; 1(1):384-93.
https://doi.org/10.3390/covid1010032
16.GISAID. GISAID Database [Internet]. 2021 [cited 2021 Dec 1]. Available from: https://www.gisaid.org/
17.J. Craig Venter Institute. PROVEAN [Internet]. 2021 [cited 2021 Dec 1]. https://provean.jcvi.org/index.php
18.Fibriani A, Stephanie R, Alfiantie AA, Siregar ALF, Pradani GAP, Yamahoki N, et al. Analysis of sars-cov-2 genomes from West Java, Indonesia. Viruses 2021; 13(10):2097.
https://doi.org/10.3390/v13102097
19.Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML, Fung SY, et al. Severe acute respiratory syndrome Coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33(8):8865-77.
https://doi.org/10.1096/fj.201802418R
20.Wang R, Yang X, Chang M, Xue Z, Wang W, Bai L, et al. ORF3a protein of severe acute respiratory syndrome coronavirus 2 inhibits interferon-activated janus kinase/signal transducer and activator of transcription signaling via elevating suppressor of cytokine signaling 1. Front Microbiol 2021; 12:752597.
https://doi.org/10.3389/fmicb.2021.752597
21.McClenaghan C, Hanson A, Lee SJ, Nichols CG. Coronavirus proteins as ion channels: current and potential research. Front Immunol 2020; 11:573339.
https://doi.org/10.3389/fimmu.2020.573339
22.Kern DM, Sorum B, Mali SS, Hoel CM, Sridharan S, Remis JP, et al. Cryo-EM structure of the SARS-CoV-2 3a in lipid nanodiscs. 2021; 28(7):573-82.
https://doi.org/10.1038/s41594-021-00619-0
23.Hassan SS, Basu P, Redwan EM, Lundstrom K, Choudhury PP, Aroca AS, et al. Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. Environ Res 2021; 204(Pt B):112092.
https://doi.org/10.1016/j.envres.2021.112092
24.Bianchi M, Borsetti A, Ciccozzi M, Pascarella S. SARS-Cov-2 ORF3a: mutability and function. Int J Biol Macromol 2020; 170:820-6.
https://doi.org/10.1016/j.ijbiomac.2020.12.142
25.Zhang Y, Sun H, Pei R, Mao B, Zhao Z, Li H, et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov 2021; 7(1):31.
https://doi.org/10.1038/s41421-021-00268-z
26.Prosite. Coronavirus (CoV) 3a-like viroporin transmembrane (TM) and cytosolic (CD) domains profiles.
https://prosite.expasy.org/PDOC51966
27.Rice AP, Kimata JT. SARS-CoV-2 likely targets cellular PDZ proteins: a common tactic of pathogenic viruses. Future Virol 2021; 10.2217/fvl-2020-0365.
https://doi.org/10.2217/fvl-2020-0365
DOI: https://doi.org/10.19106/JMedSci005501202301
Article Metrics
Abstract views : 942 | views : 1057Copyright (c) 2023 Jeanne Elvia Christian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.