Callus Induction and Plant Regeneration of Brachiaria Grass from Immature Inflorescence Explants
Nilo Suseno(1*), Nofi Isnaini(2), Bambang Suwignyo(3), Bambang Suhartanto(4), Nafiatul Umami(5)
(1) Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(2) Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(3) Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(4) Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(5) Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(*) Corresponding Author
Abstract
This research was aimed to optimize concentration of phytohormone in callus induction and in vitro regeneration of three species of Brachiaria grass plant, namely Brachiaria brizantha, B. decumbens, and B. ruziziensis. Immature inflorescences were used as explant material. To induce callus, explants were inoculated into Murashige and Skoog (MS) basal medium supplemented with phytohormone combination of 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba and kinetin. Observation of callus induction included percentage of callus formation and callus morphology. The embryogenic calli were then transferred into regeneration media, i.e. MS basal medium supplemented with kinetin and 6-benzylaminopurin (BAP). The result showed that 4 mg/L 2,4-D + 0.2 mg/L kinetin showed highest callus induction in B. brizantha and B. decumbens, namely 76% and 88% respectively. Whereas in B. ruziziensis, 3 mg/L 2,4-D + 0.2 mg/L kinetin showed highest callus induction, namely 86%. MS medium supplemented with 4 mg/L kinetin showed highest regeneration in all three grass species, namely 92.5% in both B. brizantha and B. ruziziensis, and 88.75% in B. decumbens.
Keywords
Full Text:
PDFReferences
Ali, A., L. Abdullah, P. D. M. H. Karti, M. A. Chozin, and D. A. Astuti. 2014. Evaluation, productivity and competition of Brachiaria decumbens, Centrosema pubescens and Clitoria ternatea as sole dan mixed cropping pattern in peatland. Indonesian Journal of Animal and Veterinary Sciences 19: 81-90.
Artunduaga, I.R., C.M. Taliaferro, and B.B. Johnson. 1988. Effects of auxin concentration on induction and growth of embryogenic callus from young inflorescence explants of Old World bluestem (Bothriochloa spp.) and Bermuda (Cynodon spp.) grasses. Plant Cell, Tissue, and Organ Culture 12:13-19.
Barro, F., A. Martin, P. A. Lazzeri, and P. Barcel. 1999. Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108: 161-167.
Brettell, R. I. S., W. Wernicke, and E. Thomas. 1980. Embryogenesis from cultured immature inflorescences of Sorghum bicolor. Protoplasma 104: 141-148.
Cabral, G. B., V. T. C. Carneiro, A. L. Lacerda, C. B. do Valle, A. P. Martinelli, and D. M. A. Dusi. 2011. Somatic embryogenesis and organogenesis in apomictic and sexual Brachiaria brizantha. Plant Cell and Tissue Organ Culture 107: 271-282.
Cabral, G. B., V.T.C. Carneiro, M. L. Rossi, J.P. da Silva, A.P. Martinelli, and D.M.A. Dusi. 2015. Plant regeneration from embryogenic callus and cell suspensions of Brachiaria brizantha. In Vitro Cellular & Developmental Biology - Plant. 51:369–377.
Caswell, K. L., N. L. Leung, and R. N. Chibbar. 2000. An efficient method for in vitro regeneration from immature inflorescence explants of Canadian wheat cultivars. Plant Cell, Tissue and Organ Culture 60: 69-73.
Dale, P. J., E. Thomas, R. I. S. Brettell, and W. Wernicke. 1981. Embryogenesis from cultured immature inflorescences and nodes of Lolium multiflorum. Plant Cell, Tissue and Organ Culture 1: 47-55.
Dhandapani, M., S. B. Hong, C. R. Aswath, and D. H. Kim. 2008. Regeneration of zoysia grass (Zoysia matrella L. Merr.) cv. Konhee from young inflorescences and stem nodes. In Vitro Cellular & Developmental Biology-Plant 44: 8-13.
Fanindi, A. 2016. Respon fisiologis rumput Brachiaria sp. pada lahan masam. Wartazoa 26: 143-150.
Fanindi, A. and B. R. Prawiradiputra. 2005. Karakterisasi dan pemanfaatan rumput Brachiaria sp. Prosiding Lokakarya Nasional Tanaman Pakan Ternak. Puslitbangnak, Balitbangtan, Bogor, 16 September 2005.
Głowacka, K., S. Jezowski, and Z. Kaczmarek. 2010. The effects of genotype, inflorescence developmental stage and induction medium on callus induction and plant regeneration in two Miscanthus species. Plant Cell Tiss Organ Cult 102: 79-86.
Havrlentová, M., J. Faragó, and M. Nešťáková. 2001. Regeneration of immature inflorescences of barley in vitro. Biologia Plantarum 44(1):157–159
He, G. Y. and P. A. Lazzeri. 2001. Improvement of somatic embryogenesis and plant regeneration from durum wheat (Triticum turgidum var. durum Desf.) scutellum and inflorescence cultures. Euphytica 119: 369-376.
Ishigaki, G., T. Gondo, K. Suenaga, and R. Akashi. 2009. Multiple shoot formation, somatic embryogenesis and plant regeneration from seed-derived shoot apical meristems in ruzigrass (Brachiaria ruziziensis). J. Jpn. Grassl. Sci. 55: 46-51.
Ishigaki, G., T. Gondo, K. Suenaga, and R. Akashi. 2012. Fertile transgenic Brachiaria ruziziensis (ruzigrass) plants by particle bombardment of tetraploidized callus. Journal of Plant Physiology 169:546–549.
Ishigaki, G., T. Gondo, M. M. Rahman, N. Umami, and R. Akashi. 2014. Spontaneous appearance of polyploids in plants regenerated from embryogenic calli derived from seedling-meristems of ruzigrass (Brachiaria ruziziensis Germain et Everard). Grassland Science 60:24-30.
Jogeswar, G., D. Ranadheer, V. Anjaiah, and P. B. Kavi Kishor. 2007. High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell.Dev.Biol.-Plant 43: 159-166.
Kavas, M., H. A. Oktem, and M. Yucel. 2008. Factors affecting plant regeneration from immature inflorescence of two winter wheat cultivars. Biologia Plantarum 52: 621-626.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
Neibaur, I., M. Gallo, and F. Altpeter. 2008. The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In Vitro Cell. Dev. Biol. Plant 44: 480-486.
Praveena, M. and C. C. Giri. 2012. Plant regeneration from immature inflorescence derived callus cultures of salt tolerant kallar grass (Leptochloa fusca L.). Physiol. Mol. Biol. Plants 18: 345–356.
Rodrigues-Otubo, B.M., M.I. de O. Penteado, and C.B. do Valle. 2000. Embryo rescue of interspecific hybrids of Brachiaria spp. Plant Cell, Tissue and Organ Culture 61:175–182.
Silveira, E.D., J.C.M. Rodrigues, G.B. Cabral, J.A. Leite, S.S. Costa, and V.T.C. Carneiro. 2003. Evaluation of exogenous promoters for use in Brachiaria brizantha transformation. Journal of Plant Biotechnology 5:87-93.
Takamori, L.M., N.B.M. Neto, L.G.E. Vieira, and A.F. Ribas. 2015. Optimization of somatic embryogenesis and in vitro plant regeneration of Urochloa species using picloram. In Vitro Cellular & Developmental Biology - Plant 51:554–563.
Thome, J., N. Palacios, S. Lenis, and W. Roca.1996. Applications of biotechnology to Brachiaria. In: Miles, J.W., B.L. Maass, and C.B. do Valle (eds.) Brachiaria: Biology, agronomy, and improvement. CIAT/EMBRAPA-CNPGC, Cali, Colombia, p.196-204.
Umami, N., B. Suhartanto, M. P. Dewi, C. T. Noviandi, H. Asri, N. Suseno, and R. Akashi. 2016. Productivity of two varieties Brachiaria sp. on different level of fertilizer in Yogyakarta Indonesia. In: The 17th Asian-Australasian Association of Animal Production Societies Animal Science Congress, August 22-25, 2016, Fukuoka Japan.
Umami, N., A. H. I. Kusuma, and C. T. Noviandi. 2018. Growth, production and seed quality of Brachiaria brizantha cv. Mg 5 under different planting space. Buletin Peternakan 42: 210-214.
Vikrant, R. A. 2001. Direct as well as indirect somatic embryogenesis from immature (unemerged) inflorescence of a minor millet Paspalum scrobiculatum L. Euphytica 120: 167-172.
Vishnoi, R. K. and S. L. Kothari. 1996. Somatic embryogenesis and efficient plant regeneration in immature inflorescence culture of Setaria italica (L.) Beauv. Cereal Research Communications 24: 291-297.
Yadav, C. B., P. Jha, C. Mahalakshmi, V. Anjaiah, and V. Bhat. 2009. Somatic embryogenesis and regeneration of Cenchrus ciliaris genotypes from immature inflorescence explants. Biologia Plantarum 53: 603-609.
Yaguinuma, D.H., L.M. Takamori , A.M. de Oliveira, L.G.E. Vieira, and A.F. Ribas. 2018. In vitro regeneration from leaf-base segments in three genotypes of Urochloa spp. Crop and Pasture Science 69:527-534.
DOI: https://doi.org/10.21059/buletinpeternak.v45i2.43461
Article Metrics
Abstract views : 1196 | views : 1245Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Buletin Peternakan (Bulletin of Animal Science) Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.