Identification of Glucogenic Amino Acids Content in Gliricidia maculata as an Alternative Energy Source for High-Yielding Periparturient Dairy Cows

https://doi.org/10.21059/buletinpeternak.v44i2.54103

Sulvia Dwi Astuti SW(1), Budi Prasetyo Widyobroto(2*), Ali Agus(3), Lies Mira Yusiati(4)

(1) Department of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(2) Department of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(3) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(4) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
(*) Corresponding Author

Abstract


Gliricidia maculata which has long been used as a forage for animal feed may contain a variety of glucogenic amino acids variants. The objective of this study was to identify the glucogenic amino acids content in Gliricidia maculata as an alternative source of energy for high-yielding periparturient dairy cows. The samples were the edible portion of plants, harvested randomly at the optimal cutting age (80 days), from the feed plant collection garden of The Faculty of Animal Science, Universitas Gadjah Mada. Lyophilization was carried out by drying the samples at 55°C for 3 x 24 hours continouesly in a Sanyo Drying Oven MOV-112. Pulverization was done by the Foss Tecator CyclotecTM 1093 Sample Mill with 300 mesh (1 mm screen). The hydrolysis of amino acid was carried out using HCl solution while amino acid derivatization used O-phtalaldehyde (OPA) solution. Separation, determination, and quantification of amino acid were carried out by an analytical method in gradient elution using the Thermo ScientificTM DionexTM UltiMateTM 3000 UHPLC Systems with Rapid Separation Fluorescence Detector. Result showed there were at least fourteen kinds of amino acids identified from the samples, i.e.: aspartic acid, glutamic acid, serine, histidine, glycine, arginine, alanine, tyrosin, methionine, valine, phenylalanine, isoleucine, leucine and lysine. Gliricidia maculata contains 1349 ppm glucogenic amino acids, 412.7 ppm ketogenic amino acids and 444.7 ppm glucogenic and ketogenic amino acids. Moreover, there were three types of glucogenic amino acids with the highest concentration were serine (288.7 ppm), glutamic acid (245.5 ppm) and phenylalanine (197.1 ppm) respectively. Glucogenic amino acids can be used as an energy source for dairy cows through gluconeogenesis. This study suggests that Gliricidia maculata may use to supply the precursors of energy for high-yielding periparturient dairy cows to prevent ketosis.


Keywords


Gliricidia maculata; Glucogenic amino acids; Periparturient dairy cows

Full Text:

PDF


References

Asaolu, V. O., R. T. Binuomote, J. O. Akinlade, O. J. Oyelami and K. O. Kolapo. 2011. Utilization of Moringa oleifera fodder combinations with Leucaena leucecophala and Gliricidia sepium fodders for West African Dwarf Goats. Int. J. Agric. Research 6: 607-619.

Aschenbach, J. R., N. B. Kristensen, S. S. Donkin, H. M. Hammon and G. B. Penner. 2000. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 62: 869-877.

Astuti, S. D. and B. P. Widyobroto. 2019. Identifikasi asam amino glukogenik pada beberapa legum. Laporan Penelitian Hibah Penelitian Tematik Laboratorium. Fakultas Peternakan, Universitas Gadjah Mada.

Aye, P. A. 2007. Production of multinutrient blocks for ruminant and alcohol from the waste products of leucaena leucocephala and gliricidia sepium leaves using local technologies. Ph.D. thesis in the Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria.

Baird, G. D. 1982. Primary ketosis in the high-producing dairy cow: clinical and subclinical disorders, treatment, prevention, and outlook. J. Dairy Sci. 65: 1-10. doi:10.3168/jds.s0022-0302(82)82146-2

Duffield, T. 2000. Subclinical ketosis in lactating dairy cattle. Vet. Clin. N. Am.: Food A. 16: 231-253. doi:10.1016/s0749-0720(15)30103-1 

Duffield, T. F., K. D. Lissemore, B. W. McBride and K. E. Leslie. 2009. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 92: 571-580.

Erb, H. N. and Y. T. Grohn. 1988. Epidemiology of metabolic disorders in the periparturient dairy cow. J. Dairy Sci. 71: 2557-2571.

González, F. D., R. Muiño, V. Pereira, R. Campos and J. L. Benedito. 2011. Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet. Sci. 12: 251-255.

Goff, J. P. and R. L. Horst. 1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80: 1260-1268.

Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76: 3882-3896. doi:10.3168/jds.s0022-0302(93)77729-2

Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73: 2820-2833.

Hamana, M., H. Ohtsuka, M. Oikawa and S. Kawamura. 2010. Blood free amino acids in the postpartum dairy cattle with left displaced abomasum. J. Vet. Med. Sci. 72: 1355-1358.

Hidiroglou, M. and D. M. Veira. 1982. Plasma amino acid levels in the fat cow syndrome. Ann. Rech. Vet. 13: 111-115.

Imhasly, S., H. Naegeli, S. Baumann, M. von Bergen, A. Luch, H. Jungnickel, S. Potratz and C. Gerspach. 2014. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows. BMC Vet. Res. 10: 122.

Ingvartsen, K. L., R. J. Dewhurst and N. C. Friggens. 2003. On the relationship between lactational performance and health: Is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livest. Prod. Sci. 83: 277-308.

James, K. D. 1999. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 82: 2259-2273.

Larsen, M. and N. B. Kristensen. 2013. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal 7: 1640-1650.

LeBlanc, S. J., K. D. Lissemore, D. F. Kelton, T. F. Duffield and K. E. Leslie. 2006. Major advances in disease prevention in dairy cattle. J. Dairy Sci. 89: 1267-1279.

Leslie, K. E., T. Duffield and S. LeBlanc. 2003. Monitoring and managing energy balance in the transition dairy cow. J. Dairy Sci. 86: 101-107.

Li, Y., C. Xu, C. Xia, H. Zhang, L. Sun and Y. Gao. 2014. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology. Vet. Quart. 34: 152-158

Maeda, Y., H. Ohtsuka and M. Oikawa. 2012. Effect of the periparturient period on blood free amino acid concentration in dairy cows/healthy cows. J. Vet. Med. Anim. Health 4: 124-129.

Marczuk, J., P. Brodzki, A. Brodzki3 and Ł. Kurek.2018. The concentration of free amino acids in blood serum of dairy cows with primary ketosis. Pol. J. Vet. Sci. 21: 149-156.

McArt, J. A. A., D. V. Nydam and G. R. Oetzel. 2013. Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. J. Dairy Sci. 96: 198-209. http://dx.doi.org/10.3168/jds.2012-5681

Pechova, A., J. Illek, I. Liska, R. Halouzka and L. Pavlata. 2000. Concentration of free amino acids in blood plasma of dairy cows with developing hepatic steatosis. Acta Vet. Brno. 69: 93-99.

Shibano, K. and S. Kawamura. 2006. Serum free amino acid concentration in hepatic lipidosis of dairy cows in the periparturient period. J. Vet. Med. Sci. 68: 393-396. doi:10.1292/jvms.68.393.

Simons, A. J. and J. L. Stewart. 1994. Gliricidia sepium – a multipurpose forage tree legume. p.30-48. In: Forage tree legumes in tropical agriculture. CAB International, Wallingford, UK.

Sun, L. W., H. Y. Zhang, L. Wu, S. Shu, C. Xia, C. Xu and J. S. Zheng. 2014. H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis. J. Dairy Sci. 97: 1552-1562.

Van Saun, R. J. 2002. Metabolic profiling and health risk in transition cows. Proc. Am. Assoc. Bov. Pract. 37: 212-213 3.

Van Saun, R. J. 2008. Metabolic profi ling of transition cows: can we predict impending problems? Danish Bovine Practitioner Seminar, Middelfart, Denmark, January 24-25.

Xu, C. and Z. Wang. 2008. Comparative proteomic analysis of livers from ketotic cows. Vet. Res. Commun. 32: 263-273.

Xu, C., Z. Wang, G. Liu, X. Li, G. Xie, C. Xia and H. Zhang. 2008. Metabolic characteristics of the liver of dairy cows during ketosis based on comparative proteomics. Asian-Aust J. Anim. Sci. 21: 1003-1010.

Zhang, H., L. Wu, C. Xu, C. Xia, L. Sun and S. Shu. 2013. Plasma metabolomic profiling of dairy cows affected with ketosis using gas chromatography/ mass spectrometry. BMC Vet. Res. 9: 186.



DOI: https://doi.org/10.21059/buletinpeternak.v44i2.54103

Article Metrics

Abstract views : 175 | views : 86

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

 Harvard Library
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.